Skip to main content
Log in

Self-regulation of Cerebral Blood Flow by Means of Transcranial Doppler Sonography Biofeedback

  • Original Article
  • Published:
Annals of Behavioral Medicine

Abstract

Background

Transcranial Doppler sonography (TCD) allows the continuous non-invasive assessment of intracranial blood flow velocities with high temporal resolution. It may therefore prove suitable for biofeedback of cerebral perfusion.

Purpose

The study explored whether healthy individuals can successfully be trained in self-regulation of cerebral blood flow using TCD biofeedback.

Methods

Twenty-two subjects received visual feedback of flow velocities in the middle cerebral arteries of both hemispheres. They were randomly assigned to two groups, one of which attempted to increase, the other to decrease the signal within eight training sessions. Heart rate and respiratory frequency were also monitored.

Results

Both groups achieved significant changes in flow velocities in the expected directions. Modulations in heart rate and respiratory frequency during biofeedback did not account for these effects.

Conclusions

TCD biofeedback enables efficient self-regulation of cerebral blood flow. It is promising in applications such as the treatment of migraine and post-stroke rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Paulson OB. Blood-brain barrier, brain metabolism and cerebral blood flow. Eur Neuropsychopharmacol. 2002; 12: 495–501.

    Article  PubMed  CAS  Google Scholar 

  2. Huettel SA, Song AS, McCarthy G. Functional magnetic resonance imaging. Sunderland, MA: Sinauer; 2004.

    Google Scholar 

  3. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci. 2004; 5: 347–360.

    Article  PubMed  CAS  Google Scholar 

  4. Sándor P. Nervous control of the cerebrovascular system: Doubts and facts. Neurochem Int. 1999; 35: 237–259.

    Article  PubMed  Google Scholar 

  5. Sato A, Sato Y, Uchida S. Regulation of regional cerebral blood flow by cholinergic fibres originating in the basal forebrain. Int J Dev Neurosci. 2001; 19: 327–337.

    Article  PubMed  CAS  Google Scholar 

  6. Freides D, Aberbach L. Exploring hemispheric differences in infrared brain emissions. J Neurother. 2004; 8: 53–61.

    Article  Google Scholar 

  7. Toomim H, Mize W, Kwong PC, Toomim M, Marsh R, Kozlowski GP, Kimball M, Rémond A. Intentional increase of cerebral blood oxygenation using hemoencephalography (HEG): An efficient brain exercise therapy. J Neurother. 2004; 8: 5–21.

    Article  Google Scholar 

  8. Mize W. Hemoencephalography—a new therapy for attention deficit hyperactivity disorder (ADHD): Case report. J Neurother. 2004; 8: 77–97.

    Article  Google Scholar 

  9. Carmen J A. Passive infrared hemoencephalography: Four years and 100 migraines. J Neurother. 2004; 8: 23–51.

    Article  Google Scholar 

  10. Coben R, Padolsky, IP. Infrared imaging and neurofeedback: Initial reliability and validity. J Neurother. 2007; 11: 3–13.

    Article  Google Scholar 

  11. Sherrill R. Effects of hemoencephalography (HEG) training at three prefrontal locations upon EEG ratios at Cz. J Neurother. 2004; 8: 63–76.

    Article  Google Scholar 

  12. Yoo SS, Jolesz FA. Functional MRI for neurofeedback: Feasibility study on a hand motor task. Neuroreport. 2000; 13: 1377–1381.

    Article  Google Scholar 

  13. Posse S, Fitzgerald D, Goo K, et al. Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. NeuroImage. 2003; 18: 760–768.

    Article  PubMed  Google Scholar 

  14. Rockstroh B, Elbert T, Birbaumer N, Lutzenberger W. Biofeedback-produced hemispheric asymmetry of slow cortical potentials and its behavioral effects. Int J Psychophysiol. 1990; 9: 151–165.

    Article  PubMed  CAS  Google Scholar 

  15. Weiskopf N, Veit R, Erb M, et al. Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): Methodology and exemplary data. Neuroimage. 2003; 19: 577–586.

    Article  PubMed  Google Scholar 

  16. Caria A, Veit R, Sitaram R, et al. Regulation of anterior insular cortex activity using real-time fMRI. Neuroimage. 2007; 35: 1238–1246.

    Article  PubMed  Google Scholar 

  17. Rota G, Sitaram R, Veit R, et al. Self-regulation of regional cortical activity using real-time fMRI: The right inferior frontal gyrus and linguistic processing. Hum Brain Mapp. 2009; 30: 1605–1614.

    Article  PubMed  Google Scholar 

  18. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurgery. 1982; 57: 769–774.

    Article  CAS  Google Scholar 

  19. Duschek S, Schandry R. Functional transcranial Doppler sonography as a tool in psychophysiological research. Psychophysiology. 2003; 40: 436–454.

    Article  PubMed  Google Scholar 

  20. Schuepbach D, Boeker H, Duschek S, Hell D. Rapid cerebral hemodynamic modulation during mental planning and movement execution: Evidence of time-locked relationship with complex behavior. Clin Neurophysiol. 2007; 118: 2254–2262.

    Article  PubMed  Google Scholar 

  21. Kontos HA. Validity of cerebral arterial blood flow calculations from velocity measurements. Stroke. 1998; 20: 1–3.

    Article  Google Scholar 

  22. Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993; 32: 737–741.

    Article  PubMed  CAS  Google Scholar 

  23. Thie A, Fuhlendorf A, Spitzer K, Kunze K. Transcranial Doppler evaluation of common and classic migraine. Part I. Ultrasonic features during the headache-free period. Headache. 1990; 30: 201–208.

    Article  PubMed  CAS  Google Scholar 

  24. Abernathy M, Donnelly G, Kay G, et al. Transcranial Doppler sonography in headache-free migraineurs. Headache. 1994; 34: 198–203.

    Article  PubMed  CAS  Google Scholar 

  25. Kastrup A, Thomas C, Hartmann C, Schabet M. Cerebral blood flow and CO2 reactivity in interictal migraineurs: A transcranial Doppler study. Headache. 1998; 38: 608–613.

    Article  PubMed  CAS  Google Scholar 

  26. Arjona A, de Torres LA, Serrano-Castro PJ, Guardado-Santervas PL, Olivares J, Rubi-Callejon J. A transcranial doppler study in interictal migraine and tension-type headache. J Clin Ultrasound. 2007; 35: 372–375.

    Article  PubMed  Google Scholar 

  27. Bäcker M, Sander D, Hammes MG, et al. Altered cerebrovascular response pattern in interictal migraine during visual stimulation. Cephalalgia. 2001; 21: 611–616.

    Article  PubMed  Google Scholar 

  28. Nedeltchev K, Arnold M, Schwerzmann M, et al. Cerebrovascular response to repetitive visual stimulation in interictal migraine with aura. Cephalalgia. 2004; 24: 700–706.

    Article  PubMed  CAS  Google Scholar 

  29. Silberstein SD. Migraine pathophysiology and its clinical implications. Cephalalgia. 2004; 24 Suppl 2: 2–7.

    Article  PubMed  Google Scholar 

  30. Zaletel M, Strucl M, Bajrovic FF, Pogacnik T. Coupling between visual evoked cerebral blood flow velocity responses and visual evoked potentials in migraneurs. Cephalalgia. 2005; 25: 567–574.

    Article  PubMed  CAS  Google Scholar 

  31. Vernieri F, Tibuzzi F, Pasqualetti P, et al. Increased cerebral vasomotor reactivity in migraine with aura: An autoregulation disorder? A transcranial Doppler and near-infrared spectroscopy study. Cephalalgia. 2008; 28: 689–695.

    Article  PubMed  CAS  Google Scholar 

  32. Parsons AA, Strijbos PJLM. The neuronal versus vascular hypothesis of migraine and cortical spreading depression. Curr Opin Pharmacol. 2003; 3: 73–77.

    Article  PubMed  CAS  Google Scholar 

  33. Dodick DW. Examining the essence of migraine—Is it the blood vessel or the brain? A debate. Headache. 2008; 48: 661–667.

    Article  PubMed  Google Scholar 

  34. Zhang R, Zuckerman JH, Giller CA, Levine BD. Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol Heart Circ Physiol. 1998; 274: H233–H241.

    CAS  Google Scholar 

  35. Duschek S, Werner N, Kapan N, Reyes del Paso GA. Patterns of cerebral blood flow and systemic hemodynamics during arithmetic processing. J Psychophysiol. 2008; 22: 81–90.

    Article  Google Scholar 

  36. Duschek S, Heiss H, Schmidt FH, Werner N, Schuepbach D. Interactions between systemic hemodynamics and cerebral blood flow during attentional processing. Psychophysiology. 2010; 47:1159–1166.

    PubMed  Google Scholar 

  37. Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke. 1994; 25: 793–797.

    PubMed  CAS  Google Scholar 

  38. Stroobant N, Vingerhoets G. Transcranial Doppler ultrasonography monitoring of cerebral hemodynamics during performance of cognitive tasks: A review. Neuropsychol Rev. 2000; 10: 213–231.

    Article  PubMed  CAS  Google Scholar 

  39. Diehl R, Diehl B, Sitzer M, Hennerici M. Spontaneous oscillations in cerebral blood flow velocity in normal humans and in patients with carotid artery disease. Neurosci Lett. 1991; 127: 5–8.

    Article  PubMed  CAS  Google Scholar 

  40. Haines DE. Neuroanatomy. An atlas of structures, sections, and systems. Philadelphia, PA: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  41. Hamel E, Vaucher E, Tong XK, St-Georges M. Neuronal messengers as mediators of microvascular tone in the cerebral cortex. Int Congr Ser. 2002; 1235: 262–276.

    Article  Google Scholar 

  42. Szirmai I, Amrein I, Pálvögyi L, Debreczeni R, Kamondi A. Correlation between blood flow velocity in the middle cerebral artery and EEG during cognitive effort. Cognit Brain Res. 2005; 24: 33–40.

    Article  Google Scholar 

  43. Biesold D, Inanami O, Sato A, Sato Y. Stimulation of the nucleus basalis of Meynert increases cerebral cortical blood flow in rats. Neurosci Lett. 1998; 98: 39–44.

    Article  Google Scholar 

  44. Posner MI, Petersen, SE. The attention system of the human brain. Ann Rev Neurosci. 1990; 13: 25–42.

    Article  PubMed  CAS  Google Scholar 

  45. Wise WG, Ide K, Poulin MJ, Tracey I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage. 2004; 21: 1652–1664.

    Article  PubMed  Google Scholar 

  46. McGrady A, Wauquier A, McNeil A, Gerard G. Effect of biofeedback-assisted relaxation on migraine headache and changes in cerebral blood flow velocity in the middle cerebral artery. Headache. 1994; 34: 424–428.

    Article  PubMed  CAS  Google Scholar 

  47. Wauquier A, McGrady A, Aloe L, Klausner T, Collins B. Changes in cerebral blood flow velocity associated with biofeedback-assisted relaxation treatment of migraine headaches are specific for the middle cerebral artery. Headache. 1995; 35: 358–362.

    Article  PubMed  CAS  Google Scholar 

  48. Bäcker M, Hammes M, Sander D, et al. Changes of cerebrovascular response to visual stimulation in migraineurs after repetitive sessions of somatosensory stimulation (acupuncture): A pilot study. Headache. 2004; 44: 95–101.

    Article  PubMed  Google Scholar 

  49. Nestoriuc Y, Martin A. Efficacy of biofeedback for migraine: A meta-analysis. Pain. 2007; 128: 111–127.

    Article  PubMed  Google Scholar 

  50. Nestoriuc Y, Martin A, Rief W, Andrasik F. Biofeedback treatment for headache disorders: A comprehensive efficacy review. Appl Psychophysiol Biofeedback. 2008; 33: 125–140.

    Article  PubMed  Google Scholar 

  51. Silvestrini M, Troisi E. Matteis M, Cupini LM, Caltagirone C. Involvement of the healthy hemisphere in recovery from aphasia and motor deficiency in patients with cortical ischemic infarction: A transcranial Doppler study. Neurology. 1995; 45: 1815–1820.

    PubMed  CAS  Google Scholar 

  52. Silvestrini M, Troisi E, Matteis M, Razzano C, Caltagirone C. Correlations of flow velocity changes during mental activity and recovery from aphasia in ischemic stroke. Neurology. 1998; 50: 191–195.

    PubMed  CAS  Google Scholar 

  53. Bragoni M, Caltagirone C, Troisi E, Matteis M, Verzieri F, Silvestrini M. Correlation of cerebralhemodynamic changes during mental activity and recovery after stroke. Neurology. 2000; 55: 35–40.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The cooperation between the Universities of Munich and Jaén was supported by the German Academic Exchange Service and the Spanish Ministry of Education and Science. We are grateful to Stella Bollmann and Tanja Mannhart for their help with the data acquisition and analysis.

Conflicts of Interest Statement

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Duschek Ph.D..

About this article

Cite this article

Duschek, S., Schuepbach, D., Doll, A. et al. Self-regulation of Cerebral Blood Flow by Means of Transcranial Doppler Sonography Biofeedback. ann. behav. med. 41, 235–242 (2011). https://doi.org/10.1007/s12160-010-9237-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12160-010-9237-x

Keywords

Navigation