Skip to main content

Advertisement

Log in

An insight into tumoral hypoxia: the radiomarkers and clinical applications

  • Review
  • Published:
Oncology Reviews

Abstract

Tumoral hypoxia is related to severe structural abnormalities of tumor microvessels, leading to deteriorated O2 diffusion. This decreased O2 concentration in cancer cells compromises cellular functions, besides being responsible for resistance to radiation therapy. Consequently, it is very important to know the hypoxic status of a tumor. In this review, the different methodologies available for evaluating cellular hypoxia in vivo are discussed, particularly those in which the hypoxia information is obtained through imaging. Among these the nuclear medicine approach uses ligands to complex with radionuclides. The resulting radioactive complexes which may be single photon or positron emitters, are very useful as imaging probes. The nature of ligands and their corresponding complexes, with application or potential application as hypoxia detectors, will be described. A summary of the most significant results so far obtained in clinical or pre-clinical applications will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abele D (2002) Toxic oxygen: the radical life-giver. Nature 420: 27

    Article  PubMed  CAS  Google Scholar 

  2. Clarkson AN, Sutherland BA, Appleton I (2005) The biology and pathology of hypoxia-ischemia:an update. Arch Immunol Ther Exp (Warsz) 53:213–225

    CAS  Google Scholar 

  3. Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Anal Technol Biomed Life Sci 827:65–75

    Article  CAS  Google Scholar 

  4. Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D (2003) Tumor hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev 29:297–307

    Article  PubMed  CAS  Google Scholar 

  5. Semenza GL (2001) HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3

    Article  PubMed  CAS  Google Scholar 

  6. West JB (1999) Respiratory physiology—the essentials. 6th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  7. Hockel M, Vaupel P (2001) Tumour hypoxia: definitions and current clinical, biologic and molecular aspects. J Natl Cancer Inst 93:266–276

    Article  PubMed  CAS  Google Scholar 

  8. Boyer PD, Chance B, Ernster L et al (1977) Oxidative phosphorylation and photophosphorylation. Annu Rev Biochem 46:955–1026

    Article  PubMed  CAS  Google Scholar 

  9. Honig CR (1985) Modern cardiovascular physiology, 2nd edn. Little and Brown, Boston. 1988

  10. Zander R, Vaupel P (1985) Proposal for using a standardized terminology on oxygen transport to tissue. Adv Exp Med Biol 191:965–970

    PubMed  CAS  Google Scholar 

  11. Glossary on respiration and gas exchange (1973) J Appl Physiol 34:549–558

    Google Scholar 

  12. Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  13. Vaupel P, Fortmeyer HP, Runkel S (1987) Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats. Cancer Res 47:3496–3503

    PubMed  CAS  Google Scholar 

  14. Kallinowski F, Schlenger KH, Runkel S et al (1989) Blood flow, metabolism, cellular microenvironment, and growth rate of human tumor xenografts. Cancer Res 49:3759–3764

    PubMed  CAS  Google Scholar 

  15. Harris AL (2002) Hypoxia—a key regulatory factor in tumor growth. Nat Rev Cancer 2:38–47

    Article  PubMed  CAS  Google Scholar 

  16. Gray LH, Conger AD, Ebert M (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26:638–648

    PubMed  CAS  Google Scholar 

  17. Kisaka-Kondoh S, Inoue M, Harada H, Hiraoka M (2003) Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 94:1021–1028

    Article  Google Scholar 

  18. Jain RK (1998) Determinants of tumor blood flow: a review. Cancer Res 48:2641–2658

    Google Scholar 

  19. Yu JL, Rak JW, Carmeliet P et al (2001) Heterogenous vascular dependence of tumor cell populations. Am J Pathol 158:1325–1334

    PubMed  CAS  Google Scholar 

  20. Vaupel P, Thews O, Hoeckel M (2001) Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol 18:243–259

    Article  PubMed  CAS  Google Scholar 

  21. Vaupel P, Kelleher DK, Hockel M (2001) Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 28(Suppl 8):29–35

    Article  PubMed  CAS  Google Scholar 

  22. Vaupel P, Briest S, Hockel M (2002) Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wien Med Wochenschr 152:334–342

    Article  PubMed  CAS  Google Scholar 

  23. Blankenberg FG, Strauss HW (2007) Nuclear medicine applications in molecular imaging: 2007 update. Quart J Nuclear Med Mol Imaging 51:99–110

    CAS  Google Scholar 

  24. Airley R E, Mobasheri A (2007) Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53:233–256

    Article  PubMed  CAS  Google Scholar 

  25. Helminger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high resolution measurements reveal a lack of correlation. Nat Med 3:177–182

    Article  Google Scholar 

  26. Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441:437–443

    Article  PubMed  CAS  Google Scholar 

  27. Coleman CN, Mitchell JB, Camphausen K (2002) Tumor hypoxia: chicken, egg, or a piece of the farm? J Clin Oncol 20:610–615

    PubMed  Google Scholar 

  28. Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9:4–9

    Article  PubMed  Google Scholar 

  29. Horsman MR, Overgaard J (2002) The oxygen effect and tumor microenvironment. In: Steel GG (ed) Basic clinical radiobiology, vol 26. Arnold, London, pp 281–290

  30. Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumors. Eur Radiol 17:861–872

    Article  PubMed  Google Scholar 

  31. Schwarz G (1909) Uber desensibilisierung gegen Rontgen- und Radiumstrahlen. Munchener Med Wochenschr 24:1–2

    Google Scholar 

  32. Mottram JC (1931) A factor of importance in the radio-sensitivity of tumors. Br J Radiol 9:606–614

    Article  Google Scholar 

  33. Vikram DS, Zweier JL, Kuppusamy P (2007) Methods for noninvasive imaging of tissue hypoxia. Antioxid Redox Signal 10:1745–1755

    Google Scholar 

  34. Vaupel P, Kelleher DK (eds) (1999) Tumor hypoxia: pathophysiology, clinical significance and therapeutic perspectives. Wissenschaftliche Verlagsgesellschaft, Stuttgart

  35. Stone HB, Brown JM, Philips TL, Sutherland RM (1993) Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19–20, 1992 at the National Cancer Institute, Bethesda, Maryland. Radiat Res 136:422–434

    Article  PubMed  CAS  Google Scholar 

  36. Olive PL, Banath JP, Aquino-Parsons C (2001) Measuring hypoxia in solid tumors—is there a gold standard? Acta Oncol 40:917–923

    Article  PubMed  CAS  Google Scholar 

  37. Nozue M, Lee I, Yuan F et al (1997) Interlaboratory variation in oxygen tension measurement by Eppendorf ‘Histograph’ and comparison with hypoxic marker. J Surg Oncol 66:30–38

    Article  PubMed  CAS  Google Scholar 

  38. Buerk DG (2004) Measuring tissue pO2 with microelectrodes. Methods Enzymol 381:665–690

    Article  PubMed  CAS  Google Scholar 

  39. Menon C, Fraker DL (2005) Tumor oxygenation status as a prognostic marker. Cancer Lett 221:225–235

    Article  PubMed  CAS  Google Scholar 

  40. Arbeit JM, Brown JM, Chao KS et al (2006) Hypoxia: importance in tumor biology, non-invasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82:699–757

    Article  PubMed  CAS  Google Scholar 

  41. Vaupel P, Thews O, Kelleher DK, Konerding MA (2003) O(2) extraction is a key parameter determining the oxygenation status of malignant tumors and normal tissues. Int J Oncol 22:795–798

    PubMed  CAS  Google Scholar 

  42. Griffiths JR, Robinson SP (1999) The OxyLite: a fibre-optic oxygen sensor. Br J Radiol 72:627–630

    PubMed  CAS  Google Scholar 

  43. Raleigh JA, Miller GG, Franko AJ et al (1987) Fluorescence immunohistochemical detection of hypoxic cells in spheroids and tumors. Br J Cancer 56:395–400

    PubMed  CAS  Google Scholar 

  44. Koch CJ (2002) Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5. Methods Enzymol 352:3–31

    Article  PubMed  CAS  Google Scholar 

  45. Hedley D, Pintilie M, Woo J et al (2003) Carbonic anhydrase IX expression, hypoxia, and prognosis in patients with uterine cervical carcinomas. Clin Cancer Res 9:5666–5674

    PubMed  CAS  Google Scholar 

  46. Ljungkvist AS, Bussink J, Rijken PF (2002) Vascular architecture, hypoxia, and proliferation in first-generation xenografts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 54:215–228

    PubMed  Google Scholar 

  47. Rijken PF, Bernsen HJ, Peters JP (2000) Spatial relationship between hypoxia and the (perfused) vascular network in a human glioma xenograft: a quantitative multi-parameter analysis. Int J Radiat Oncol Biol Phys 48:571–582

    PubMed  CAS  Google Scholar 

  48. Raleigh JA, Chou SC, Arteel GE (1999) Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 151:580–589

    Article  PubMed  CAS  Google Scholar 

  49. Ivanov S, Liao SY, Ivanova A (2001) Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 158:905–919

    PubMed  CAS  Google Scholar 

  50. Laderoute KR, Grant TD, Murphy BJ (1992) Enhanced epidermal growth factor receptor synthesis in human squamous carcinoma cells exposed to low levels of oxygen. Int J Cancer 52:428–432

    Article  PubMed  CAS  Google Scholar 

  51. Grandis JR, Melhem MF, Gooding WE (1998) Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 90:824–832

    Article  Google Scholar 

  52. Moscatello DK, Holgado-Madruga M, Godwin AK (1995) Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 55:5536–5539

    PubMed  CAS  Google Scholar 

  53. Forsythe JA, Jiang BH, Iyer NV (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    PubMed  CAS  Google Scholar 

  54. Dunst J, Stadler P, Becker A (2001) Tumor hypoxia and systemic levels of vascular endothelial growth factor (VEGF) in head and neck cancers. Strahlenther Onkol 177:469–473

    Article  PubMed  CAS  Google Scholar 

  55. Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  PubMed  CAS  Google Scholar 

  56. Intes X, Chance B (2005) Non-PET functional imaging techniques: optical. Radiol Clin North Am 43(XII):221–234

    Article  PubMed  Google Scholar 

  57. Boushel R, Langberg H, Olesen J et al (2001) Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 11:213–222

    Article  PubMed  CAS  Google Scholar 

  58. Howe FA, Robinson SP, McIntyre DJ et al (2001) Issues in flow and oxygenation dependent contrast (FLOOD) imaging of tumors. NMR Biomed 14:497–506

    Article  PubMed  CAS  Google Scholar 

  59. Taylor JS, Tofts PS, Port R et al (1999) MR imaging of tumor microcirculation: promise for the new millennium. J Magn Reson Imaging 10:903–907

    Article  PubMed  CAS  Google Scholar 

  60. Halpern HJ, Yu C, Peric M et al (1994) Oxymetry deep in tissues with low-frequency electron paramagnetic resonance. Proc Natl Acad Sci USA 91:13047–13051

    Article  PubMed  CAS  Google Scholar 

  61. Swartz HM, Clarkson RB (1998) The measurement of oxygen in vivo using EPR techniques. Phys Med Biol 43:1957–1975

    Article  PubMed  CAS  Google Scholar 

  62. Swartz HM, Walczak T (1998) Developing in vivo EPR oximetry for clinical use. Adv Exp Med Biol 454:243–252

    PubMed  CAS  Google Scholar 

  63. Loncaster JA, Carrington BM, Skyes JR et al (2002) Prediction of radiotherapy outcome using dynamic contrast enhanced MRI of carcinoma of the cervix. Int J Radiat Oncol Biol Phys 54:759–767

    PubMed  Google Scholar 

  64. Krausse BJ, Beck R, Souvatzoglou M, Piert M (2006) PET and PET/CT studies of tumor tissue oxygenation. Q J Nucl Med Mol Imaging 50:28–43

    Google Scholar 

  65. Warburg O (1956) On the origin of the cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  66. Ballinger JR (2001) Imaging hypoxia in tumors. Semin Nucl Med 31:321–329

    Article  PubMed  CAS  Google Scholar 

  67. Jurisson SS, Lydon JD (1999) Potential technetium small molecule radiopharmaceuticals. Chem Rev 99:2205–2218

    Article  PubMed  CAS  Google Scholar 

  68. Reichert DE, Lewis JS, Anderson CJ (1999) Metal complexes as diagnostic tools. Coord Chem Rev 184:3–66

    Article  CAS  Google Scholar 

  69. Méndez-Rojas MA, Kharisov BI, Tsivadze AY (2006) Recent advances on technetium complexes: coordination chemistry and medical applications. J Coord Chem 59:1–63

    Article  CAS  Google Scholar 

  70. Zhuang ZP, Plössl K, Kung MP et al (1999) Neutral and stereospecific Tc-99m complexes: [99mTc]N-benzyl-3,4-di-(N-mercaptoethyl)-amino-pyrrolidines (P-BAT). Nucl Med Biol 26:217–224

    Article  PubMed  CAS  Google Scholar 

  71. Mallia MB, Subramanian S, Banerjee S et al (2006) Evaluation of 99mTc(CO)3 complex of 2-methyl-5-nitroimidazole as an agent for targeting tumor hypoxia. Bioorg Med Chem 14:7666–7670

    Article  PubMed  CAS  Google Scholar 

  72. Chapman JD (1979) Current concepts in cancer. Hypoxia sensitizers-implications for radiation therapy. N Eng J Med 301:1429–1432

    Article  CAS  Google Scholar 

  73. Nunn A, Linder K, Strauss HW (1995) Nitroimidazole and imaging hypoxia. Eur J Nucl Med 22:265–280

    Article  PubMed  CAS  Google Scholar 

  74. Raju N, Ramalingam K, Nowotnik DP (1992) Syntheses of some nitroimidazole substituted boronic acids: precursors to technetium-99m complexes with potential for imaging hypoxic tissue. Tetrahedron 48:10233–10238

    Article  CAS  Google Scholar 

  75. Hodgkiss R (1998) Use of 2-nitroimidazoles as bioreductive markers for tumor hypoxia. Anticancer Drug Des 13:687–702

    PubMed  CAS  Google Scholar 

  76. Rauth AM, Melo T, Misra V (1998) Bioreductive therapies: an overview of drugs and their mechanisms of action. Int J Radiat Oncol Biol Phys 42:755–762

    PubMed  CAS  Google Scholar 

  77. Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49:129S–148S

    Article  PubMed  CAS  Google Scholar 

  78. Strauss HW, Nunn A, Linder K (1995) Nitroimidazoles for imaging hypoxic myocardium. J Nucl Cardiol 2:437–445

    Article  PubMed  CAS  Google Scholar 

  79. Linder KE, Chan YW, Cyr JE et al (1993) Synthesis, characterization, and in vitro evaluation of nitroimidazole-BATO complexes: new technetium compounds designed for imaging hypoxic tissue. Bioconj Chem 4:326–333

    Article  CAS  Google Scholar 

  80. Nunn AD, Feld TA, Treher EN (1987) Boronic acid adducts of technetium-99m dioxime complexes. US Patent 4,705,849, 10 Nov 1987

  81. Treher EN, Francesconi LC, Gougoutas JZ et al (1989) Mono-capped tris(dioxime) complexes of technetium (III): synthesis and structural characterization of TcX(dioxime)3B-R(X=Cl, Br, dioxime dimethylglyoxime cyclohexanedione dioxime; R=CH3,C4H9). Inorg Chem 28:3411–3416

    Article  CAS  Google Scholar 

  82. Narra RK, Nunn AD, Kuczynski BL et al (1989) A neutral technetium-99m complex for myocardial imaging. J Nucl Med 30:1830–1837

    PubMed  CAS  Google Scholar 

  83. Linder KE, Chan YW, Cyr JE et al (1994) 99TcO(PnAO-1-2-nitroimidazole) [BMS-181321], a new technetium-containing nitroimidazole complex for imaging hypoxia: synthesis, characterization and xanthine oxidase-catalyzed reduction. J Med Chem 37:9–17

    Article  PubMed  CAS  Google Scholar 

  84. Ramalingam K, Raju N, Nanjappan P, Nowotnik DP (1995) Synthesis of nitroimidazole substituted 3,3,9,9-tetramethyl-4,8-diazaundecane-2,10-dione dioximes (propylene amine oximes, PnAOs): ligands for technetium-99m complexes with potential for imaging hypoxic tissue. Tetrahedron 51:2875–2894

    Article  CAS  Google Scholar 

  85. Linder KE, Cyr JE, Chan Y-W et al (1994) Effect of substituents on physiochemical and biological behavior of Tc-PnAO nitroimidazoles. J Nucl Med 35:18P

    Google Scholar 

  86. Nanjappann P, Raju N, Ramalingam K, Nowotnik DP (1994) An efficient synthesis of some 6-substituted 4,8.diaza-3,3,9,9-tetramethylundeca-2,10-dione dioximes (propylene amine oximas, PnAOs): ligands for 99mTc complexes used in structure distribution relationship (SDR) studies. Tetrahedron 50:8617–8632

    Article  Google Scholar 

  87. Archer CM, Binke JF, Canning LR et al (1999) Radiometal complexes that localize in hypoxic tissue. US Patent 5,997,843, 7 Dec 1999

  88. Linder K, Nunn AD, Nowotnik DP et al (2005) Rhenium and technetium complexes containing a hypoxia-localizing moiety. US Patent 6,958,141 B2, 25 Oct 2005

  89. Xu H, Chu T, Wang X, Liu X (2005) Facile synthesis of bis(hydroxyamamide) based tetradentate ligands for 99mTc-radiopharmaceutical. Appl Radiat Isot 62:919–922

    Article  PubMed  CAS  Google Scholar 

  90. Ramalingam K (2005) Methods of synthesizing heteroatom-bearing ligands and intermediate used thereof. US Patent 6,933,391 B2, 23 Aug 2005

  91. Zhang X, Melo T, Rauth AM, Ballinger JR (2001) Cellular accumulation and retention of the technetium-99m-labelled hypoxia markers BRU59-21 and butylene amine oxime. Nucl Med Biol 28:949–957

    Article  PubMed  CAS  Google Scholar 

  92. Melo T, Duncan J, Balinger JR, Rauth AM (2000) BRU59-21 a second-generation 99mTc-labeled 2-nitroimidazole for imaging hypoxia in tumors. J Nucl Med 41:169–176

    PubMed  CAS  Google Scholar 

  93. Hoebers FJP, Janssen HLK, Olmos RAV et al (2002) Phase 1 study to identify tumor hypoxia in patients with head and neck cancer using technetium-99m BRU 59-21. Eur J Nucl Med 29:1206–1211

    Article  CAS  Google Scholar 

  94. Murugesen S, Shetty SJ, Noronha OPD et al (2001) Technetium-99m-cyclam AK 2123: a novel marker for tumor hypoxia. Appl Radiat Isot 54:81–88

    Article  Google Scholar 

  95. Liang X, Sadler PJ (2004) Cyclam complexes and their applications in medicine. Crit Rev 33:246–266

    CAS  Google Scholar 

  96. Kinuya S, Yokoyama K, Fukuoka M et al (2005) Anti-angiogenic therapy and chemotherapy affect 99mTc sestamibi and 99mTc-HL91 accumulation differently in tumour xenografts. Nucl Med Commun 26:1067–1073

    Article  PubMed  CAS  Google Scholar 

  97. Riché F, d’Hardemare AM, Sèpe S et al (2001) Nitroimidazoles and hypoxia imaging: synthesis of three technetium-99m complexes bearing a nitroimidazole group: biological results. Bioorg Med Chem Lett 11:71–74

    Article  PubMed  Google Scholar 

  98. Ramalingam K, Raju N, Nanjappan P et al (1994) The synthesis and in vitro evaluation of a 99mtechenetium-nitroimidazole complex based on a bis(amino-phenol) ligand: comparison to BMS-181321. J Med Chem 37:4155–4163

    Article  PubMed  CAS  Google Scholar 

  99. Bormans G, Cleynhens B, Groot et al (2003) Synthesis radio-LC-MS analysis and biodistribution in mice of 99mTc-NIM-BAT. J Label Compd Radiopharm 46:575–585

  100. Volkert WA, Hoffman TJ, Seger RM et al (1984) 99mTc-propylene amine oxime 99mTc-PnAO); a potential brain radiopharmaceutical. Eur J Nucl Med 9:511–516

    Article  PubMed  CAS  Google Scholar 

  101. Archer CM, Edwards B, Kelly JD (1995) Technetium-labeled agents for imaging tissue hypoxia in vivo. In: Nicolini M, Bandoli G, Mazzi U (eds) Technetium and rhenium in chemistry and nuclear medicine. SG Editoriali, Padova, pp 535–539

    Google Scholar 

  102. Zhang X, Melo T, Ballinger JR, Rauth AM (1998) Studies of 99mTc-BnAO (HL-91): a non-nitroaromatic compound for hypoxic cell detection. Int J Radiation Oncology Biol Phys 42:737–740

    CAS  Google Scholar 

  103. Imahashi K, Morishita K, Kusuoka H et al (2000) Kinetics of a putative hypoxic tracer, 99mTc-HL91, in a normoxic, hypoxic, ischemic, and stunned myocardium. J Nucl Med 41:1102–1107

    PubMed  CAS  Google Scholar 

  104. Suzuki T, Nakamura K, Kawase T, Kubo A (2003) Monitoring of response to radiation therapy for human tumor xenografts using 99mTc-HL91 (4,9-diaza-3,3,10,10-tetramethyldodecan-2,11-dione dioxime). Ann Nucl Med 17:131–138

    Article  PubMed  CAS  Google Scholar 

  105. Kasina S (2007) Bridged aromatic substituted amine ligands with donor atoms. US Patent 7,268,220 B2, 11 Sep 2007

  106. Chu T, Li R, Hu S et al (2004) Preparation and biodistribution of technetium-99m-labeled 1-(2-nitroimidazole-1-yl)propanhydroxyiminoamide (N2IPA) as a tumor hypoxia marker. Nucl Med Biol 31:199–203

    Article  PubMed  CAS  Google Scholar 

  107. Chu T, Hu S, Wei B et al (2004) Synthesis and biological results of the technetium-99m-labeled 4-nitroimidazole for imaging tumor hypoxia. Bioorg Med Chem Lett 14:747–749

    Article  PubMed  CAS  Google Scholar 

  108. Zhang Y, Chu T, Gao X et al (2006) Synthesis and preliminary biological evaluation of the 99mTc labelled nitrobenzoimidazole and nitrotriazole as tumor hypoxia markers. Bioorg Med Chem Lett 16:1831–1833

    Article  PubMed  CAS  Google Scholar 

  109. Mallia MB, Subramanian S, Mathur A et al (2008) On the isolation and evaluation of a novel unsubstituted 5-nitroimidazole derivative as an agent to target tumor hypoxia. Bioorg Med Chem Lett 18:5233–5237

    Article  PubMed  CAS  Google Scholar 

  110. Jalilian AR, Bineshmarvasti M (2006) Synthesis, radiolabeling and stability of new nitrophenol complexes of 99mTc as possible hypoxia imaging radiopharmaceuticals. J Radioanal Nucl Med 267:169–173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Chymiotechnon, Ministério da Economia/POE/Prime/Proj 3/293/CLARO, Faculdade de Medicina de Coimbra for financial support.

Conflict of interest statement

The authors declare that they have no conflict of interest to the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Filomena Botelho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrantes, A.M., Serra, M.E., Murtinho, D. et al. An insight into tumoral hypoxia: the radiomarkers and clinical applications. Oncol Rev 3, 3–18 (2009). https://doi.org/10.1007/s12156-009-0001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12156-009-0001-z

Keywords

Navigation