Skip to main content

Advertisement

Log in

A Bioinformatic Analysis of NAC Genes for Plant Cell Wall Development in Relation to Lignocellulosic Bioenergy Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

NAM, ATAF, and CUC2 (NAC) proteins are encoded by one of the largest plant-specific transcription factor gene families. The functions of many NAC proteins relate to different aspects of lignocellulosic biomass production, and a small group of NAC transcription factors has been characterized as master regulators of plant cell wall development. In the present study, a total of 1,232 NAC protein sequences from 11 different organisms were analyzed by sequence phylogeny based on protein DNA-binding domains. We included eight whole genomes (Arabidopsis, rice, poplar, grape, sorghum, soybean, moss (Physcomitrella patens), and spike moss (Selaginella moellendorffii)) and three not yet fully sequenced genomes (maize, switchgrass, and Medicago truncatula) in our analyses. Ninety-two potential PvNAC genes from switchgrass and 148 PtNAC genes from poplar were identified. The 1,232 NAC proteins were phylogenetically classified into eight subfamilies, each of which was further divided into subgroups according to their tree topology. The phylogenetic subgroups were then grouped into different clades each sharing conserved motif patterns in the C-terminal sequences, and those that may function in plant cell wall development were further identified through motif grouping and gene expression pattern analysis using publicly available microarray data. Our results provide a bioinformatic baseline for further functional analyses of candidate NAC genes for improving cell wall and environmental tolerance traits in the bioenergy crops switchgrass and poplar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ferrell JE, Wright LL, Tuskan GA (1995) Research to develop improved production methods for woody and herbaceous biomass crops. Paper presented at the conference: 2. Meeting on biomass of the Americas, Portland, Oregon, 21–24 Aug 1995

  2. McLaughlin S, Bouto J, Bransby D, Conger B, Ocumpaugh W, Parrish D et al (1999) Developing switchgrass as a bioenergy crop. ASHS, Alexandria, pp 282–299

    Google Scholar 

  3. Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  PubMed  CAS  Google Scholar 

  4. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  PubMed  CAS  Google Scholar 

  5. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K et al (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  PubMed  CAS  Google Scholar 

  6. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  PubMed  CAS  Google Scholar 

  7. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  8. Mao CZ, Ding WN, Wu YR, Yu J, He XW, Shou HX et al (2007) Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol 176:288–298

    Article  PubMed  CAS  Google Scholar 

  9. Zhong R, Ye Z-H (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    Article  PubMed  CAS  Google Scholar 

  10. Demura T, Fukuda H (2007) Transcriptional regulation in wood formation. Trends Plant Sci 12:64–70

    Article  PubMed  CAS  Google Scholar 

  11. Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z-H (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20:2763–2782

    Article  PubMed  CAS  Google Scholar 

  12. Zhao CS, Craig JC, Petzold HE, Dickerman AW, Beers EP (2005) The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root-hypocotyl. Plant Physiol 138:803–818

    Article  PubMed  CAS  Google Scholar 

  13. Zhao C, Avci U, Grant EH, Haigler CH, Beers EP (2008) XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. Plant J 53:425–436

    Article  PubMed  CAS  Google Scholar 

  14. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J et al (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860

    Article  PubMed  CAS  Google Scholar 

  15. Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M (2005) The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17:2993–3006

    Article  PubMed  CAS  Google Scholar 

  16. Mitsuda N, Iwase A, Yamamoto H, Yoshida M, Seki M, Shinozaki K et al (2007) NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell 19:270–280

    Article  PubMed  CAS  Google Scholar 

  17. Zhong RQ, Richardson EA, Ye Z-H (2007) Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225:1603–1611

    Article  PubMed  CAS  Google Scholar 

  18. Zhong RQ, Demura T, Ye Z-H (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18:3158–3170

    Article  PubMed  CAS  Google Scholar 

  19. Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Gen Genet 280:547–563

    CAS  Google Scholar 

  20. Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  21. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  22. The Arabidopsis Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  23. Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  PubMed  CAS  Google Scholar 

  24. Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  25. Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  26. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  27. Dong QF, Lawrence CJ, Schlueter SD, Wilkerson MD, Kurtz S, Lushbough C et al (2005) Comparative plant genomics resources at PlantGDB. Plant Physiol 139:610–618

    Article  PubMed  CAS  Google Scholar 

  28. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  PubMed  CAS  Google Scholar 

  29. Ahola V, Aittokallio T, Vihinen M, Uusipaikka E (2006) A statistical score for assessing the quality of multiple sequence alignments. BMC Bioinformatics 7:484

    Article  PubMed  CAS  Google Scholar 

  30. Nuin PA, Wang Z, Tillier ER (2006) The accuracy of several multiple sequence alignment programs for proteins. BMC Bioinformatics 7:471

    Article  PubMed  CAS  Google Scholar 

  31. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  32. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373

    Article  PubMed  CAS  Google Scholar 

  33. Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yichuan 29:1023–1026

    CAS  Google Scholar 

  34. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  PubMed  CAS  Google Scholar 

  35. Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, Yoon HK et al (2007) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35:203–213

    Article  PubMed  CAS  Google Scholar 

  36. Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    Article  PubMed  CAS  Google Scholar 

  37. Yamaguchi M, Kubo M, Fukuda H, Demura T (2008) Vascular-related NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664

    Article  PubMed  CAS  Google Scholar 

  38. Kunieda T, Mitsuda N, Ohme-Takagi M, Takeda S, Aida M, Tasaka M et al (2008) NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. Plant Cell 20:2631–2642

    Article  PubMed  CAS  Google Scholar 

  39. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L et al (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:1–5

    Article  Google Scholar 

  40. Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X et al (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756–767

    Article  PubMed  Google Scholar 

  41. Hall BG (2005) Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Mol Biol Evol 22:792–802

    Article  PubMed  CAS  Google Scholar 

  42. Ogden TH, Rosenberg MS (2006) Multiple sequence alignment accuracy and phylogenetic inference. Syst Biol 55:314–328

    Article  Google Scholar 

  43. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y et al (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed  CAS  Google Scholar 

  44. Lin R, Zhao W, Meng X, Wang M, Peng Y (2007) Rice gene OsNAC19 encodes a novel NAC-domain transcription factor and responds to infection by Magnaporthe grisea. Plant Sci 172:120–130

    Article  CAS  Google Scholar 

  45. Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262:1047–1051

    Article  PubMed  CAS  Google Scholar 

  46. Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46:521–529

    Article  PubMed  CAS  Google Scholar 

  47. Liu Z, Shao FX, Tang GY, Shan L, Bi YP (2009) Cloning and characterization of a transcription factor ZmNAC1 in maize (Zea mays). Yichuan 31:199–205

    Google Scholar 

  48. Oh SK, Lee S, Yu SH, Choi D (2005) Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. Planta 222:876–887

    Article  PubMed  CAS  Google Scholar 

  49. Bowman JL, Floyd SK, Sakakibara K (2007) Green genes—comparative genomics of the green branch of life. Cell 129:229–234

    Article  PubMed  CAS  Google Scholar 

  50. Kim Y-S, Kim S-G, Park J-E, Park H-Y, Lim M-H, Chua N-H et al (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18:3132–3144

    Article  PubMed  CAS  Google Scholar 

  51. Yoon H, Kim S, Park C (2008) Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Mol Cells 25:438–445

    PubMed  CAS  Google Scholar 

  52. Yoshii M, Shimizu T, Yamazaki M, Higashi T, Miyao A, Hirochika H et al (2009) Disruption of a novel gene for a NAC-domain protein in rice confers resistance to rice dwarf virus. Plant J 57:615–625

    Article  PubMed  CAS  Google Scholar 

  53. Mitsuda N, Ohme-Takagi M (2008) NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Plant J 56:768–778

    Article  PubMed  CAS  Google Scholar 

  54. Riano-Pachon DM, Ruzicic S, Dreyer I, Mueller-Roeber B (2007) PlnTFDB: an integrative plant transcription factor database. BMC Bioinformatics 8:42

    Article  PubMed  CAS  Google Scholar 

  55. Ko JH, Yang SH, Park AH, Lerouxel O, Han KH (2007) ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J 50:1035–1048

    Article  PubMed  CAS  Google Scholar 

  56. Hay A, Tsiantis M (2005) From genes to plants via meristems. Development 132:2679–2684

    Article  PubMed  Google Scholar 

  57. Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M et al (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945

    Article  PubMed  CAS  Google Scholar 

  58. Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 7:1127–1135

    Google Scholar 

  59. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916

    Article  PubMed  CAS  Google Scholar 

  60. Kusano H, Asano T, Shimada H, Kadowaki K-i (2005) Molecular characterization of ONAC300, a novel NAC gene specifically expressed at early stages in various developing tissues of rice. Mol Gen Genomics 272:616–626

    Article  CAS  Google Scholar 

  61. Xie Q, Sanz-Burgos A, Guo H, García J, Gutiérrez C (1999) GRAB proteins, novel members of the NAC domain family, isolated by their interaction with a geminivirus protein. Plant Mol Biol 39:647–656

    Article  PubMed  CAS  Google Scholar 

  62. Souer E, Van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  PubMed  CAS  Google Scholar 

  63. Ruiz-Medrano R, Xoconostle-Cazares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126:4405–4419

    PubMed  CAS  Google Scholar 

  64. Zimmermann R, Werr W (2005) Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues from Zea mays L. Plant Mol Biol 58:669–685

    Article  PubMed  CAS  Google Scholar 

  65. Willemsen V, Bauch M, Bennett T, Campilho A, Wolkenfelt H, Xu J et al (2008) The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells. Dev Cell 15:913–922

    Article  PubMed  CAS  Google Scholar 

  66. Yoo SY, Kim Y, Kim SY, Lee JS, Ahn JH (2007) Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS ONE 2:e642

    Article  PubMed  CAS  Google Scholar 

  67. Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M et al (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065–1075

    Article  PubMed  CAS  Google Scholar 

  68. Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY et al (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80:135–139

    Article  PubMed  CAS  Google Scholar 

  69. Ogo Y, Kobayashi T, Itai RN, Nakanishi H, Kakei Y, Takahashi M et al (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem 283:13407–13417

    Article  PubMed  CAS  Google Scholar 

  70. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q et al (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  71. Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  PubMed  CAS  Google Scholar 

  72. Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F et al (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63:289–305

    Article  PubMed  CAS  Google Scholar 

  73. Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES et al (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745–757

    Article  PubMed  CAS  Google Scholar 

  74. Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    Article  PubMed  CAS  Google Scholar 

  75. John I, Hackett R, Cooper W, Drake R, Farrell A, Grierson D (1997) Cloning and characterization of tomato leaf senescence-related cDNAs. Plant Mol Biol 33:641–651

    Article  PubMed  CAS  Google Scholar 

  76. Kim JH, Woo HR, Kim J, Lim PO, Lee IC, Choi SH et al (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057

    Article  PubMed  CAS  Google Scholar 

  77. Sharma N, Piscioneri I, Pignatelli V (2003) An evaluation of biomass yield stability of switchgrass (Panicum virgatum L.) cultivars. Energy Convers Manag 44:2953–2958

    Article  Google Scholar 

  78. Das MK, Fuentes RG, Taliaferro CM (2004) Genetic variability and trait relationships in switchgrass. Crop Sci 44:443–448

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants to RAD and YX from the US Department of Energy Bioenergy Research Centers, through the Office of Biological and Environmental Research in the DOE Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Xu or Richard A. Dixon.

Additional information

Hui Shen and Yanbin Yin contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Intron-exon analysis of different NAC subfamilies. (a) to (h) show the intron-exon analysis for the NAC-a to NAC-h subfamilies, respectively. The available intron-exon structures are plotted on the phylogentic tree. Open box, exon; solid black box, exons that encode NAC AE domain regions; Line, intron; 0, 1 and 2, intron phase. (PDF 12349 kb)

Fig. S2

The motif clades and subgroups for the NAC-a subfamily. Subgroups are a-1 to a-9; motif clades are a-sc1 to a-sc20. Red/blue colored tree I.D. indicates NAC proteins from dicots and monocots, light blue PpNACs and green SmNACs. The bootstrap values of the branches are shown in black numbers. The MEME motifs are shown as different colored boxes; the solid red, pink, light blue, blue and yellow boxes at the N-terminal indicate the NAC domain region. (PDF 12349 kb)

Fig. S3

The motif clades and subgroups for the NAC-g subfamily. Subgroups are g-1 to g-9; motif clades are g-sc1 to g-sc11. Red/blue colored tree I.D. indicates NAC proteins from dicots and monocots, light blue PpNACs and green SmNACs. The bootstrap values of the branches are shown in black numbers. The MEME motifs are shown as different colored boxes; the solid red, pink, light blue, blue and yellow boxes at the N-terminal indicate the NAC domain region. (PDF 12349 kb)

Fig. S4

Sequence-specific MEME motifs for NAC-c (NST and VND) proteins. (a) MEME motif layout patterns identified in the NAC-c subfamily. (b-d) Logos and clade specific sequences for motifs C.M7, C.M6 and C.M9. (e) Logos and comparison of different clade -specific sequences for motif C.M10. Most of the NST proteins have the sequence specific C.M7 (c-sc8, c-sc9 and csc10), C.M6 (a-sc8, c-sc9 and c-sc10) and C.M9 (a-sc8, c-sc9 and c-sc10) motifs. (PDF 12349 kb)

Fig. S5

Sequence-specific MEME motifs for NAC-g (SND) proteins. (a) MEME motif layout patterns identified in the NAC-g subfamily. (b-e) Logos and comparison of different clade - specific sequences for motifs g.M7, g.M19, g.M25 and g.M47. (PDF 12349 kb)

Fig. S6

Tissue coexpression analysis of selected Arabidopsis NAC genes. All the ANACs identified in this study together with marker genes related to plant cell-wall development and biomass production were analyzed by the GENEVESTIGATOR program for tissue coexpression patterns. Hierarchical clustering was calculated by Pearson correlation. Red box, lignin biosynthetic gene pattern, with the dotted red box showing the pattern for monolignol synthetic genes. Blue box, the secondary cell-wall polysaccharide biosynthetic gene pattern. Green box, ANAC009, ANAC015, ANAC033, ANAC070 and ANAC094 co-expression pattern. Orange box: ANAC104/AtXND1, ANAC056 and NAC074 co-expression pattern. (PDF 12349 kb)

Table S1

The gene and phylogenetic tree IDs used in this study (XLS 187 kb)

Table S2

Subdomain and motif analyses for the 1,232 NAC proteins (XLS 507 kb)

Table S3

Functionally characterized NAC proteins and NAC subfamilies. (PDF 12349 kb)

Table S4

Comparison of the three phylogenetic classifications of NAC genes. (PDF 12349 kb)

Table S5

List of the Arabidopsis NAC genes selected for coexpression analysis (PDF 12349 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, H., Yin, Y., Chen, F. et al. A Bioinformatic Analysis of NAC Genes for Plant Cell Wall Development in Relation to Lignocellulosic Bioenergy Production. Bioenerg. Res. 2, 217–232 (2009). https://doi.org/10.1007/s12155-009-9047-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-009-9047-9

Keywords

Navigation