Skip to main content

Advertisement

Log in

Fluorescence nanoscopy. Methods and applications

  • Review
  • Published:
Journal of Chemical Biology

Abstract

Fluorescence nanoscopy refers to the experimental techniques and analytical methods used for fluorescence imaging at a resolution higher than conventional, diffraction-limited, microscopy. This review explains the concepts behind fluorescence nanoscopy and focuses on the latest and promising developments in acquisition techniques, labelling strategies to obtain highly detailed super-resolved images and in the quantitative methods to extract meaningful information from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Please note that structured illumination microscopy is also commonly used to designate a diffraction-limited optical sectioning methodology based on patterned illumination [98].

Abbreviations

3B:

Bayesian analysis of the bleaching and blinking

βME:

β-Mercaptoethanol

φFl :

Fluorescence quantum yield

AChR:

Acetylcholine receptor

BaLM:

Bleaching/blinking assisted localisation microscopy

CHO:

Chinese hamster ovary

CW:

Continuous wave

dSTORM:

Direct STORM

EM:

Electron microscopy

ER:

Endoplasmic reticulum

EMCCD:

Electron-multiplying CCD

FCS:

Fluorescence correlation spectroscopy

FIONA:

Fluorescence imaging with 1 nm accuracy

FlAsH:

Fluorescein arsenical helix

FP:

Fluorescent protein

FPALM:

Fluorescent photoactivation light microscopy

FWHM:

Full width half maximum

GPI:

Glycophosphatidylinositol

GSH:

Glutathione

GSD:

Ground state depletion

GSDIM:

Ground state depletion followed by individual molecule return

GPU:

Graphics processing unit

HA:

Hemagglutinin

HIV-1:

Human immunodeficiency virus type 1

LM:

Localisation microscopy

MEA:

Mercaptoethylamine

MLE:

Maximum likelihood estimate

NA:

Numerical aperture

NK:

Natural killer

NPC:

Nuclear pore complex

PA-FP:

Photoactivatable fluorescent protein, it is usually referred to any photoactivatable, photoswitchable or photochromic FP

PAINT:

Paint accumulation for imaging in nanoscale topography

PALM:

Photoactivation localisation microscopy

PALMIRA:

Photoactivation light microscopy with independent running acquisition

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PSF:

Point spread function

RESOLFT:

Reversible, saturable, optical fluorescence transition

SIM:

Structured illumination microscopy

SOFI:

Stochastic optical fluctuation imaging

SSIM:

Saturated structured illumination

STORM:

Stochastic optical reconstruction microscopy

STED:

Stimulated emission depletion

TCR:

T cell antigen receptor

TfR:

Transferrin receptor

TIRF:

Total internal reflection fluorescence

References

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung. Arch f Mikrosk Anat 9:413–420

    Article  Google Scholar 

  2. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21(11):1347–1355

    Article  CAS  Google Scholar 

  3. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission—stimulated-emission-Depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  Google Scholar 

  4. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14):954–956

    Article  CAS  Google Scholar 

  5. Klar TA, Jakobs S, Dyba M et al (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97(15):8206–8210

    Article  CAS  Google Scholar 

  6. Hell SW, Kroug M (1995) Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B Lasers Opt 60(5):495–497

    Article  Google Scholar 

  7. Bretschneider S, Eggeling C, Hell SW (2007) Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys Rev Lett 98:218103

    Article  CAS  Google Scholar 

  8. Hofmann M, Eggeling C, Jakobs S et al (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci 102(49):17565–17569

    Article  CAS  Google Scholar 

  9. Rittweger E, Han KY, Irvine SE et al (2009) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photon 3(3):144–147

    Article  CAS  Google Scholar 

  10. Schmidt R, Wurm CA, Jakobs S et al (2008) Spherical nanosized focal spot unravels the interior of cells. Nat Methods 5(6):539–544

    Article  CAS  Google Scholar 

  11. Willig KI, Harke B, Medda R et al (2007) STED microscopy with continuous wave beams. Nat Methods 4(11). doi:10.1038/nmeth1108

  12. Moffitt JR, Osseforth C, Michaelis J (2011) Time-gating improves the spatial resolution of STED microscopy. Opt Express 19(5):4242–4254

    Article  Google Scholar 

  13. Vicidomini G, Moneron G, Han KY et al (2011) Sharper low-power STED nanoscopy by time gating. Nat Methods 8(7). doi:10.1038/nmeth.1624

  14. Donnert G, Keller J, Wurm CA et al (2007) Two-color far-field fluorescence nanoscopy. Biophys J 92(8):L67–L69

    Article  CAS  Google Scholar 

  15. Willig KI, Stiel AC, Brakemann T et al (2011) Dual-label STED nanoscopy of living cells using photochromism. Nano Lett 11(9):3970–3973

    Article  CAS  Google Scholar 

  16. Buckers J, Wildanger D, Vicidomini G et al (2011) Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express 19(4):3130–3143

    Article  CAS  Google Scholar 

  17. Kastrup L, Blom H, Eggeling C et al (2005) Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94(17). doi:10.1103/PhysRevLett.94.178104

  18. Eggeling C, Ringemann C, Medda R et al (2009) Direct observation of nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1163

    Article  CAS  Google Scholar 

  19. Ringemann C, Harke B, von Middendorff C et al (2009) Exploring single-molecule dynamics with fluorescence nanoscopy. New J Phys 11. doi:10.1088/1367-2630/11/10/103054

  20. Mueller V, Ringemann C, Honigmann A et al (2011) STED nanoscopy reveals molecular details of cholesterol- and cytoskeleton-modulated lipid interactions in living cells. Biophys J 101(7):1651–1660

    Article  CAS  Google Scholar 

  21. Auksorius E, Boruah BR, Dunsby C et al (2008) Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt Lett 33(2):113–115

    Article  Google Scholar 

  22. Dedecker P, Hotta J, Flors C et al (2007) Subdiffraction imaging through the selective donut-mode depletion of thermally stable photoswitchable fluorophores: numerical analysis and applications to the fluorescent protein Dronpa. J Am Chem Soc 129:16132–16141

    Article  CAS  Google Scholar 

  23. Grotjohann T, Testa I, Reuss M et al (2012) rsGFP2 enables fast RESOLFT nanoscopy of living cells. eLife 1(e00248). doi:10.7554/eLife.00248

  24. Testa I, Urban NT, Jakobs S et al (2012) Nanoscopy of living brain slices with low light levels. Neuron 75(6):992–1000

    Article  CAS  Google Scholar 

  25. Widengren J, Chmyrov A, Eggeling C et al (2007) Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. J Phys Chem A 111(3):429–440

    Article  CAS  Google Scholar 

  26. Lauterbach MA, Keller J, Schonel A et al (2010) Comparing video-rate STED nanoscopy and confocal microscopy of living neurons. J Biophoton 3(7):417–424

    Article  Google Scholar 

  27. Westphal V, Rizzoli SO, Lauterbach MA et al (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873):246–249

    Article  CAS  Google Scholar 

  28. Berning S, Willig KI, Steffens H et al (2012) Nanoscopy in a living mouse brain. Science 335(6068):551–551

    Article  CAS  Google Scholar 

  29. Pellett PA, Sun XL, Gould TJ et al (2011) Two-color STED microscopy in living cells. Biomed Opt Express 2(8):2364–2371

    Article  Google Scholar 

  30. Bingen P, Reuss M, Engelhardt J et al (2011) Parallelized STED fluorescence nanoscopy. Opt Express 19(24):23716–23726

    Article  CAS  Google Scholar 

  31. Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  Google Scholar 

  32. Xu K, Babcock HP, Zhuang XW (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9(2):185–188

    Article  CAS  Google Scholar 

  33. Aquino D, Schonle A, Geisler C et al (2011) Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat Methods 8(4). doi:10.1038/nmeth.1583

  34. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  Google Scholar 

  35. Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  CAS  Google Scholar 

  36. Hess HF, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  CAS  Google Scholar 

  37. Heilemann M, van de Linde S, Mukherjee A et al (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48(37):6903–6908

    Article  CAS  Google Scholar 

  38. Heilemann M, van de Linde S, Schuttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176

    Article  CAS  Google Scholar 

  39. Folling J, Bossi M, Bock H et al (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945

    Article  CAS  Google Scholar 

  40. Egner A, Geisler C, Von Middendorff C et al (2007) Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys J 93(9):3285–3290

    Article  CAS  Google Scholar 

  41. Manley S, Gillette JM, Patterson GH et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5(2):155–157

    Article  CAS  Google Scholar 

  42. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A 103(50):18911–18916

    Article  CAS  Google Scholar 

  43. Giannone G, Hosy E, Levet F et al (2010) Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. Biophys J 99(4):1303–1310

    Article  CAS  Google Scholar 

  44. Lew MD, Lee SF, Ptacin JL et al (2011) Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. Proc Natl Acad Sci U S A 108(46):E1102–E1110

    Article  CAS  Google Scholar 

  45. Bates M, Huang B, Dempsey GT et al (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753

    Article  CAS  Google Scholar 

  46. Shroff H, Galbraith CG, Galbraith JA et al (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A 104(51):20308–20313

    Article  CAS  Google Scholar 

  47. Bossi M, Fölling J, Belov VN et al (2008) Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nanoletters 8(8):2463–2468

    Article  CAS  Google Scholar 

  48. Andresen M, Stiel AC, Folling J et al (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26(9):1035–1040

    Article  CAS  Google Scholar 

  49. van de Linde S, Endesfelder U, Mukherjee A et al (2009) Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochem Photobiol Sci 8(4):465–469

    Article  CAS  Google Scholar 

  50. Testa I, Wurm CA, Medda R et al (2010) Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. Biophys J 99(8):2686–2694

    Article  CAS  Google Scholar 

  51. Baddeley D, Crossman D, Rossberger S et al (2011) 4D super-resolution microscopy with conventional fluorophores and single wavelength excitation in optically thick cells and tissues. PLoS One 6(5):e20645. doi:10.1371/journal.pone.0020645

    Article  CAS  Google Scholar 

  52. Bates M, Dempsey GT, Chen KH et al (2012) Multicolor super-resolution fluorescence imaging via multi-parameter fluorophore detection. Chemphyschem 13(1):99–107

    Article  CAS  Google Scholar 

  53. Juette MF, Gould TJ, Lessard MD et al (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6):527–529

    Article  CAS  Google Scholar 

  54. Huang B, Wang W, Bates M et al (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813

    Article  CAS  Google Scholar 

  55. Pavani SRP, Thompson MA, Biteen JS et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A 106(9):2995–2999

    Article  CAS  Google Scholar 

  56. Baddeley D, Cannell M, Soeller C (2011) Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil. Nano Res 4(6):589–598

    Article  CAS  Google Scholar 

  57. Izeddin I, El Beheiry M, Andilla J et al (2012) PSF shaping using adaptive optics for three-dimensional single-molecule super-resolution imaging and tracking. Opt Express 20(5):4957–4967

    Article  CAS  Google Scholar 

  58. Vaziri A, Tang JY, Shroff H et al (2008) Multilayer three-dimensional super resolution imaging of thick biological samples. Proc Natl Acad Sci U S A 105(51):20221–20226

    Article  CAS  Google Scholar 

  59. York AG, Ghitani A, Vaziri A et al (2011) Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat Methods 8(4). doi:10.1038/nmeth.1571

  60. Zanacchi FC, Lavagnino Z, Perrone Donnorso M et al (2011) Live-cell 3D superresolution imaging in thick biological samples. Nat Methods 8:1047–1049

    Article  CAS  Google Scholar 

  61. Shtengel G, Galbraith JA, Galbraith CG et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106(9):3125–3130

    Article  CAS  Google Scholar 

  62. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2):159–161

    Article  CAS  Google Scholar 

  63. Badieirostami M, Lew MD, Thompson MA et al (2010) Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. Appl Phys Lett 97(16):161103. doi:10.1063/1.3499652

    Article  CAS  Google Scholar 

  64. Quirin S, Pavani SRP, Piestun R (2012) Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions. Proc Natl Acad Sci U S A 109(3):675–679

    Article  CAS  Google Scholar 

  65. Huisken J, Swoger J, Del Bene F et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009

    Article  CAS  Google Scholar 

  66. Andersson SB (2008) Localization of a fluorescent source without numerical fitting. Opt Express 16(23):18714–18724

    Article  CAS  Google Scholar 

  67. Parthasarathy R (2012) Rapid, accurate particle tracking by calculation of radial symmetry centers. Nat Methods 9(7). doi:10.1038/nmeth.2071

  68. Ma HQ, Long F, Zeng SQ et al (2012) Fast and precise algorithm based on maximum radial symmetry for single molecule localization. Opt Lett 37(13):2481–2483

    Article  Google Scholar 

  69. Hedde PN, Fuchs J, Oswald F et al (2009) Online image analysis software for photoactivation localization microscopy. Nat Methods 6(10):689–690

    Article  CAS  Google Scholar 

  70. Wolter S, Loschberger A, Holm T et al (2012) rapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods 9(11):1040–1041

    Article  CAS  Google Scholar 

  71. Henriques R, Lelek M, Fornasiero EF et al (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in image. J Nat Methods 7(5):339–340

    Article  CAS  Google Scholar 

  72. Mortensen KI, Churchman LS, Spudich JA et al (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5). doi:10.1038/nmeth.1447

  73. Smith CS, Joseph N, Rieger B et al (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5). doi:10.1038/nmeth.1449

  74. Quan TW, Li PC, Long F et al (2010) Ultra-fast, high-precision image analysis for localization-based super resolution microscopy. Opt Express 18(11):11867–11876

    Article  Google Scholar 

  75. Stallinga S, Rieger B (2010) Accuracy of the Gaussian point spread function model in 2D localization microscopy. Opt Express 18(24):24461–24476

    Article  CAS  Google Scholar 

  76. Engelhardt J, Keller J, Hoyer P et al (2011) Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. Nano Lett 11(1):209–213

    Article  CAS  Google Scholar 

  77. Backlund MP, Lew MD, Backer AS et al (2012) Simultaneous, accurate measurement of the 3D position and orientation of single molecules. Proc Natl Acad Sci U S A 109(47):19087–19092

    Article  CAS  Google Scholar 

  78. Stallinga S, Rieger B (2012) Position and orientation estimation of fixed dipole emitters using an effective Hermite point spread function model. Opt Express 20(6):5896–5921

    Article  Google Scholar 

  79. Mlodzianoski MJ, Schreiner JM, Callahan SP et al (2011) Sample drift correction in 3D fluorescence photoactivation localization microscopy. Opt Express 19(16):15009–15019

    Article  Google Scholar 

  80. Geisler C, Hotz T, Schonle A et al (2012) Drift estimation for single marker switching based imaging schemes. Opt Express 20(7):7274–7289

    Article  Google Scholar 

  81. Flors C, Hotta J, Uji-I H et al (2007) A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. J Am Chem Soc 129(45):13970–13977

    Article  CAS  Google Scholar 

  82. Jones SA, Shim SH, He J et al (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6). doi:10.1038/nmeth.1605

  83. Shroff H, Galbraith CG, Galbratih JA et al (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423

    Article  CAS  Google Scholar 

  84. Wolter S, Endesfelder U, van de Linde S et al (2011) Measuring localization performance of super-resolution algorithms on very active samples. Opt Express 19(8):7020–7033

    Article  Google Scholar 

  85. Frost NA, Shroff H, Kong HH et al (2010) Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines. Neuron 67(1):86–99

    Article  CAS  Google Scholar 

  86. Holden SJ, Uphoff S, Kapanidis AN (2011) DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat Methods 8(4):279–280

    Article  CAS  Google Scholar 

  87. Huang F, Schwartz SL, Byars JM et al (2011) Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed Opt Express 2(5):1377–1393

    Article  Google Scholar 

  88. Zhu L, Zhang W, Elnatan D et al (2012) Faster STORM using compressed sensing. Nat Methods 9(7). doi:10.1038/nmeth.1978

  89. Dedecker P, Mo GCH, Dertinger T et al (2012) Widely accessible method for superresolution fluorescence imaging of living systems. Proc Natl Acad Sci U S A 109(27):10909–10914

    Article  CAS  Google Scholar 

  90. Dertinger T, Colyer R, Iyer G et al (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106(52):22287–22292

    Article  CAS  Google Scholar 

  91. Quan TW, Zhu HY, Liu XM et al (2011) High-density localization of active molecules using structured sparse model and Bayesian information criterion. Opt Express 19(18):16963–16974

    Article  CAS  Google Scholar 

  92. Cox S, Rosten E, Monypenny J et al (2012) Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 9(2). doi:10.1038/nmeth.1812

  93. Maji S, Bruchez MP (2012) Inferring biological structures from super-resolution single molecule images using generative models. Plos One 7(5). doi:10.1371/journal.pone.0036973

  94. Burnette DT, Sengupta P, Dai YH et al (2011) Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc Natl Acad Sci U S A 108(52):21081–21086

    Article  CAS  Google Scholar 

  95. Hu YS, Nan X, Sengupta P et al (2013) Accelerating 3B single-molecule super-resolution microscopy with cloud computing. Nat Methods 10(2):96–97

    Article  CAS  Google Scholar 

  96. Baddeley D, Cannell MB, Soeller C (2010) Visualization of localization microscopy data. Microsc Microanal 16(1):64–72

    Article  CAS  Google Scholar 

  97. Krizek P, Raska I, Hagen GM (2011) Minimizing detection errors in single molecule localization microscopy. Opt Express 19(4):3226–3235

    Article  Google Scholar 

  98. Neil MAA, Juskaitis R, Wilson T (1997) Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt Lett 22(24):1905–1907

    Article  CAS  Google Scholar 

  99. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc-Oxf 198(2):82–87

    Article  CAS  Google Scholar 

  100. Schermelleh L, Carlton PM, Haase S et al (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336

    Article  CAS  Google Scholar 

  101. Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy—a concept for optical resolution improvement. J Opt Soc Am A 19(8):1599–1609

    Article  Google Scholar 

  102. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci 102(37):13081–13086

    Article  CAS  Google Scholar 

  103. Rego EH, Shao L, Macklin JJ et al (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A 109(3):E135–E143

    Article  CAS  Google Scholar 

  104. Gustafsson MGL, Shao L, Carlton PM et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94(12):4957–4970

    Article  CAS  Google Scholar 

  105. Shao L, Kner P, Hesper Rego E et al (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8(12):1044–1046

    Article  CAS  Google Scholar 

  106. York AG, Parekh SH, Nogare DD et al (2012) Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat Methods 9(7). doi:10.1038/nmeth.2025

  107. Kuang CF, Zhao W, Wang GR (2010) Far-field optical nanoscopy based on continuous wave laser stimulated emission depletion. Rev Sci Instrum 81(5):053709. doi:10.1063/1.3432001

    Article  CAS  Google Scholar 

  108. Wildanger D, Rittweger E, Kastrup L et al (2008) STED microscopy with a supercontinuum laser source. Opt Express 16(13):9614–9621

    Article  Google Scholar 

  109. Donnert G, Keller J, Medda R et al (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci U S A 103(31):11440–11445

    Article  CAS  Google Scholar 

  110. Sieber JJ, Willig KI, Heintzmann R et al (2006) The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys J 90:2843–2851

    Article  CAS  Google Scholar 

  111. Willig KI, Keller J, Bossi M et al (2006) STED microscopy resolves nanoparticles assemblies. New J Phys 8. doi:10.1088/1367-2630/8/6/106

  112. Willig KI, Kellner RR, Medda R et al (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3(9):721–723

    Article  CAS  Google Scholar 

  113. Nagerl UV, Willig KI, Hein B et al (2008) Live-cell imaging of dendritic spines by STED microscopy. Proc Natl Acad Sci U S A 105(48):18982–18987

    Article  CAS  Google Scholar 

  114. Hein B, Willig KI, Hell SW (2008) Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc Natl Acad Sci 105(38):14271–14276

    Article  CAS  Google Scholar 

  115. Morozova KS, Piatkevich KD, Gould TJ et al (2010) Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys J 99(2):L13–L15

    Article  CAS  Google Scholar 

  116. Strack RL, Hein B, Bhattacharyya D et al (2009) A rapidly maturing far-red derivative of DsRed-Expres2 for whole-cell labeling. Biochemistry 48(35):8279–8281

    Article  CAS  Google Scholar 

  117. Brakemann T, Stiel AC, Weber G et al (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29(10). doi:10.1038/nbt.1952

  118. Los GV, Encell LP, McDougall MG et al (2008) HatoTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382

    Article  CAS  Google Scholar 

  119. Schroder J, Benink H, Dyba M et al (2009) In vivo labeling method using a genetic construct for nanoscale resolution microscopy. Biophys J 96(1):L1–L3

    Article  CAS  Google Scholar 

  120. Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21(1):86–89

    Article  CAS  Google Scholar 

  121. Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136

    Article  CAS  Google Scholar 

  122. Hein B, Willig KI, Wurm CA et al (2010) Stimulated emission depletion nanoscopy of living cells using SNAP-Tag fusion proteins. Biophys J 98(1):158–163

    Article  CAS  Google Scholar 

  123. Ormo M, Cubitt AB, Kallio K et al (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273(5280):1392–1395

    Article  CAS  Google Scholar 

  124. Wombacher R, Heidbreder M, van de Linde S et al (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7(9):717–719

    Article  CAS  Google Scholar 

  125. Klein T, Loschberger A, Proppert S et al (2011) Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 8(1):7–9

    Article  CAS  Google Scholar 

  126. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877

    Article  CAS  Google Scholar 

  127. Subach FV, Patterson GH, Manley S et al (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6(2):153–159

    Article  CAS  Google Scholar 

  128. Gunewardene MS, Subach FV, Gould TJ et al (2011) Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J 101(6):1522–1528

    Article  CAS  Google Scholar 

  129. Verkhusha VV, Sorkin A (2005) Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol 12(3):279–285

    Article  CAS  Google Scholar 

  130. Subach FV, Patterson GH, Renz M et al (2010) Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132(18):6481–6491

    Article  CAS  Google Scholar 

  131. Gurskaya NG, Verkhusha VV, Shcheglov AS et al (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24(4):461–465

    Article  CAS  Google Scholar 

  132. Hoi HF, Shaner NC, Davidson MW et al (2010) A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization. J Mol Biol 401(5):776–791

    Article  CAS  Google Scholar 

  133. McKinney SA, Murphy CS, Hazelwood KL et al (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6(2):131–133

    Article  CAS  Google Scholar 

  134. Zhang MS, Chang H, Zhang YD et al (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9(7). doi:10.1038/nmeth.2021

  135. Habuchi S, Tsutsui H, Kochaniak AB et al (2008) mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One 3(12):e3944. doi:10.1371/journal.pone.0003944

    Article  CAS  Google Scholar 

  136. McEvoy AL, Hoi H, Bates M et al (2012) mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities. PLoS One 7(12):e51314. doi:10.1371/journal.pone.0051314

    Article  CAS  Google Scholar 

  137. Chudakov DM, Verkhusha VV, Staroverov DB et al (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22(11):1435–1439

    Article  CAS  Google Scholar 

  138. Subach OM, Patterson GH, Ting LM et al (2011) A photoswitchable orange-to-far-red fluorescent protein, PSmOrange. Nat Methods 8(9). doi:10.1038/nmeth.1664

  139. Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306(5700):1370–1373

    Article  CAS  Google Scholar 

  140. Chang H, Zhang MS, Ji W et al (2012) A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci U S A 109(12):4455–4460

    Article  CAS  Google Scholar 

  141. Stiel AC, Andresen M, Bock H et al (2008) Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J 95:2989–2997

    Article  CAS  Google Scholar 

  142. Stiel AC, Trowitzsch S, Weber G et al (2007) 1.8 angstrom bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402:35–42

    Article  CAS  Google Scholar 

  143. van Thor JJ, Gensch T, Hellingwerf KJ et al (2002) Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol 9(1):37–41

    Article  CAS  Google Scholar 

  144. Wiedenmann J, Ivanchenko S, Oswald F et al (2004) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101(45):15905–15910

    Article  CAS  Google Scholar 

  145. Habuchi S, Ando R, Dedecker P et al (2005) Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci U S A 102(27):9511–9516

    Article  CAS  Google Scholar 

  146. Habuchi S, Dedecker P, Hotta JI et al (2006) Photo-induced protonation/deprotonation in the GFP-like fluorescent protein Dronpa: mechanism responsible for the reversible photoswitching. Photochem Photobiol Sci 5(6):567–576

    Article  CAS  Google Scholar 

  147. Andresen M, Stiel AC, Trowitzsch S et al (2007) Structural basis for reversible photoswitching in Dronpa. Proc Natl Acad Sci U S A 104(32):13005–13009

    Article  CAS  Google Scholar 

  148. Heilemann M, Margeat E, Kasper R et al (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127(11):3801–3806

    Article  CAS  Google Scholar 

  149. Vogelsang J, Cordes T, Forthmann C et al (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci U S A 106(20):8107–8112

    Article  CAS  Google Scholar 

  150. Dempsey GT, Vaughan JC, Chen KH et al (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Meth 8(12):1027–1036

    Article  CAS  Google Scholar 

  151. Lee HLD, Lord SJ, Iwanaga S et al (2010) Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. J Am Chem Soc 132(43):15099–15101

    Article  CAS  Google Scholar 

  152. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281(5374):269–272

    Article  CAS  Google Scholar 

  153. Lelek M, Di Nunzio F, Henriques R et al (2012) Superresolution imaging of HIV in infected cells with FlAsH-PALM. Proc Natl Acad Sci U S A 109(22):8564–8569

    Article  CAS  Google Scholar 

  154. Wilmes S, Staufenbiel M, Lisse D et al (2012) Triple-color super-resolution imaging of live cells: resolving submicroscopic receptor organization in the plasma membrane. Angew Chem-Int Ed 51(20):4868–4871

    Article  CAS  Google Scholar 

  155. Shannon CE (1949) Communication in the presence of noise. Proc Inst Radio Eng 37(1):10–21

    Google Scholar 

  156. Ram S, Ward ES, Ober RJ (2006) Beyond Rayleigh’s criterion: a resolution measure with application to single-molecule microscopy. Proc Natl Acad Sci U S A 103(12):4457–4462

    Article  CAS  Google Scholar 

  157. Fitzgerald JE, Lu J and Schnitzer MJ (2012) Estimation theoretic measure of resolution for stochastic localization microscopy. Phys Rev Lett 109(4):048102

    Google Scholar 

  158. Mukamel EA, Schnitzer MJ (2012) Unified resolution bounds for conventional and stochastic localization fluorescence microscopy. Phys Rev Lett 109(16):168102

    Google Scholar 

  159. Ripley BD (1977) Modeling spatial patterns. J R Stat Soc Ser B Methodol 39(2):172–212

    Google Scholar 

  160. Kiskowski MA, Hancock JF, Kenworthy AK (2009) On the use of Ripley’s K-function and its derivatives to analyze domain size. Biophys J 97:1095–1103

    Article  CAS  Google Scholar 

  161. Annibale P, Vanni S, Scarselli M et al (2011) Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS One 6(7):e22678. doi:10.1371/journal.pone.0022678

    Article  CAS  Google Scholar 

  162. Annibale P, Vanni S, Scarselli M et al (2011) Identification of clustering artifacts in photoactivated localization microscopy. Nat Methods 8(7):527–528

    Article  CAS  Google Scholar 

  163. Veatch SL, Machta BB, Shelby SA et al (2012) Correlation functions quantify super-resolution images and estimate apparent clustering due to over-counting. PLoS One 7(2):e31457. doi:10.1371/journal.pone.0031457

    Article  CAS  Google Scholar 

  164. Sengupta P, Lippincott-Schwartz J (2012) Quantitative analysis of photoactivated localization microscopy (PALM) datasets using pair-correlation analysis. Bioessays 34(5):396–405

    Article  Google Scholar 

  165. Sengupta P, Jovanovic-Talisman T, Lippincott-Schwartz J (2013) Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nat Protoc 8(2):345–354

    Article  CAS  Google Scholar 

  166. Sengupta P, Jovanovic-Talisman T, Skoko D et al (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Meth 8(11):969–975

    Article  CAS  Google Scholar 

  167. Watanabe S, Punge A, Hollopeter G et al (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1). doi:10.1038/nmeth.1537

  168. Kopek BG, Shtengel G, Xu CS et al (2012) Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci U S A 109(16):6136–6141

    Article  CAS  Google Scholar 

  169. Sharma S, Santiskulvong C, Bentolila LA et al (2012) Correlative nanomechanical profiling with super-resolution F-actin imaging reveals novel insights into mechanisms of cisplatin resistance in ovarian cancer cells. Nanomed Nanotechnol Biol Med 8(5):757–766

    Article  CAS  Google Scholar 

  170. Kanchanawong P, Shtengel G, Pasapera AM et al (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468(7323). doi:10.1038/nature09621

  171. Rossier O, Octeau V, Sibarita JB et al (2012) Integrins beta(1) and beta(3) exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat Cell Biol 14(10). doi:10.1038/ncb2588

  172. Shim SH, Xia CL, Zhong GS et al (2012) Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci U S A 109(35):13978–13983

    Article  CAS  Google Scholar 

  173. Lakadamyali M, Babcock H, Bates M et al (2012) 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. PLoS One 7(1):e30826. doi:10.1371/journal.pone.0030826

    Article  CAS  Google Scholar 

  174. van de Linde S, Sauer M, Heilemann M (2008) Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. J Struct Biol 164(3):250–254

    Article  CAS  Google Scholar 

  175. Wurm CA, Neumann D, Lauterbach MA et al (2011) Nanoscale distribution of mitochondrial import receptor Tom20 is adjusted to cellular conditions and exhibits an inner-cellular gradient. Proc Natl Acad Sci U S A 108(33):13546–13551

    Article  CAS  Google Scholar 

  176. Appelhans T, Richter CP, Wilkens V et al (2012) Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. Nano Lett 12(2):610–616

    Article  CAS  Google Scholar 

  177. Loschberger A, van de Linde S, Dabauvalle MC et al (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125(3):570–575

    Article  CAS  Google Scholar 

  178. Yao J, Fetter RD, Hu P et al (2011) Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev 25(6):569–580

    Article  CAS  Google Scholar 

  179. Bohn M, Diesinger P, Kaufmann R et al (2010) Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. Biophys J 99(5):1358–1367

    Article  CAS  Google Scholar 

  180. Flors C, Ravarani CNJ, Dryden DTF (2009) Super-resolution imaging of DNA labelled with intercalating dyes. Chemphyschem 10(13):2201–2204

    Article  CAS  Google Scholar 

  181. Flors C (2010) Photoswitching of monomeric and dimeric DNA-intercalating cyanine dyes for super-resolution microscopy applications. Photochem Photobiol Sci 9(5):643–648

    Article  CAS  Google Scholar 

  182. Flors C (2011) DNA and chromatin imaging with super-resolution fluorescence microscopy based on single-molecule localization. Biopolymers 95(5):290–297

    Article  CAS  Google Scholar 

  183. Zessin PJM, Finan K, Heilemann M (2012) Super-resolution fluorescence imaging of chromosomal DNA. J Struct Biol 177(2):344–348

    Article  CAS  Google Scholar 

  184. Lee SF, Thompson MA, Schwartz MA et al (2011) Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. Biophys J 100(7):L31–L33

    Article  CAS  Google Scholar 

  185. Wang WQ, Li GW, Chen CY et al (2011) Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333(6048):1445–1449

    Article  CAS  Google Scholar 

  186. Owen DM, Rentero C, Rossy J et al (2010) PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophoton 3(7):446–454

    Article  CAS  Google Scholar 

  187. Kellner RR, Baier CJ, Willig KI et al (2007) Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 144(1):135–143

    Article  CAS  Google Scholar 

  188. Hess ST, Gould TJ, Gudheti MV et al (2007) Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci U S A 104(44):17370–17375

    Article  CAS  Google Scholar 

  189. Scarselli M, Annibale P, Radenovic A (2012) Cell type-specific beta 2-adrenergic receptor clusters identified using photoactivated localization microscopy are not lipid raft related, but depend on actin cytoskeleton integrity. J Biol Chem 287(20):16768–16780

    Article  CAS  Google Scholar 

  190. Mizuno H, Abe M, Dedecker P et al (2011) Fluorescent probes for superresolution imaging of lipid domains on the plasma membrane. Chem Sci 2(8):1548–1553

    Article  CAS  Google Scholar 

  191. Kuo CK, Hochstrasser RM (2011) Super-resolution microscopy of lipid bilayer phases. J Am Chem Soc 133(13):4664–4667

    Article  CAS  Google Scholar 

  192. Sieber JJ, Willig KI, Kutzner C et al (2007) Anatomy and dynamics of a supramolecular membrane protein cluster. Science 317(5841):1072–1076

    Article  CAS  Google Scholar 

  193. van den Bogaart G, Meyenberg K, Risselada HJ et al (2011) Membrane protein sequestering by ionic protein–lipid interactions. Nature 479(7374):552–555

    Article  CAS  Google Scholar 

  194. Bar-On D, Wolter S, van de Linde S et al (2012) Super-resolution imaging reveals the internal architecture of nano-sized syntaxin clusters. J Biol Chem 287(32):27158–27167

    Article  CAS  Google Scholar 

  195. Hsu CJ, Baumgart T (2011) Spatial association of signaling proteins and F-actin effects on cluster assembly analyzed via photoactivation localization microscopy in T cells. PLoS One 6(8):e23586. doi:10.1371/journal.pone.0023586

    Article  CAS  Google Scholar 

  196. Lillemeier BF, Mortelmaier MA, Forstner MB et al (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11(1). doi:10.1038/ni.1832

  197. Williamson DJ, Owen DM, Rossy J et al (2011) Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 12(7). doi:10.1038/ni.2049

  198. Brown ACN, Oddos S, Dobbie IM et al (2011) Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. Plos Biol 9(9):e1001152. doi:10.1371/journal.pbio.1001152

    Article  CAS  Google Scholar 

  199. Opazo F, Punge A, Bueckers J et al (2010) Limited intermixing of synaptic vesicle components upon vesicle recycling. Traffic 11(6):800–812

    Article  CAS  Google Scholar 

  200. Willig KI, Rizzoli SO, Westphal V et al (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440(7086):935–939

    Article  CAS  Google Scholar 

  201. Hoopmann P, Punge A, Barysch SV et al (2010) Endosomal sorting of readily releasable synaptic vesicles. Proc Natl Acad Sci U S A 107(44):19055–19060

    Article  CAS  Google Scholar 

  202. Dean C, Liu H, Staudt T et al (2012) Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity. J Neurosci 32(16):5398–5413

    Article  CAS  Google Scholar 

  203. Kamin D, Lauterbach MA, Westphal V et al (2010) High- and low-mobility stages in the synaptic vesicle cycle. Biophys J 99(2):675–684

    Article  CAS  Google Scholar 

  204. Hoze N, Nair D, Hosy E et al (2012) Heterogeneity of AMPA receptor trafficking and molecular interactions revealed by superresolution analysis of live cell imaging. Proc Natl Acad Sci U S A 109(42):17052–17057

    Article  CAS  Google Scholar 

  205. Izeddin I, Specht CG, Lelek M et al (2011) Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS One 6(1):e15611. doi:10.1371/journal.pone.0015611

    Article  CAS  Google Scholar 

  206. Dani A, Huang B, Bergan J et al (2010) Superresolution imaging of chemical synapses in the brain. Neuron 68(5):843–856

    Article  CAS  Google Scholar 

  207. Riedl J, Crevenna AH, Kessenbrock K et al (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5(7):605–607

    Article  CAS  Google Scholar 

  208. Urban NT, Willig KI, Hell SW et al (2011) STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophys J 101(5):1277–1284

    Article  CAS  Google Scholar 

  209. Gunzenhauser J, Olivier N, Pengo T et al (2012) Quantitative super-resolution imaging reveals protein stoichiometry and nanoscale morphology of assembling HIV-Gag virions. Nano Lett 12(9):4705–4710

    Article  CAS  Google Scholar 

  210. Lehmann M, Rocha S, Mangeat B et al (2011) Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction. PLoS Pathog 7(12):e1002456. doi:10.1371/journal.ppat.1002456

    Article  CAS  Google Scholar 

  211. Malkusch S, Muranyi W, Muller B et al (2013) Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochem Cell Biol 139(1):173–179

    Article  CAS  Google Scholar 

  212. Chojnacki J, Staudt T, Glass B et al (2012) Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338(6106):524–528

    Article  CAS  Google Scholar 

  213. Ries J, Kaplan C, Platonova E et al (2012) A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9(6). doi:10.1038/nmeth.1991

  214. Gould TJ, Burke D, Bewersdorf J et al (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20(19):20998–21009

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges funding from the Ministerio de Ciencia e Innovación of Spain (MICINN Plan Nacional contract number FIS2009-07966) and the continuing support of the Fundación Biofísica-Bizkaia, in Spain. The author also thanks Gloria de las Heras and Unai Lorenzo for helpful comments and critical revision of the manuscript and Asier Ruiz (Achucarro Basque Centre for Neurosciences) for permission to reproduce Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Requejo-Isidro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Requejo-Isidro, J. Fluorescence nanoscopy. Methods and applications. J Chem Biol 6, 97–120 (2013). https://doi.org/10.1007/s12154-013-0096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-013-0096-3

Keywords

Navigation