Skip to main content

Advertisement

Log in

Brought to life: targeted activation of enzyme function with small molecules

  • Review
  • Published:
Journal of Chemical Biology

Abstract

Cell-permeable small molecules that are capable of activating particular enzymes would be invaluable tools for studying protein function in complex cell-signaling cascades. But, is it feasible to identify compounds that allow chemical–biology researchers to activate specific enzymes in a cellular context? In this review, we describe some recent advances in achieving targeted enzyme activation with small molecules. In addition to surveying progress in the identification and targeting of enzymes that contain natural allosteric-activation sites, we focus on recently developed protein-engineering strategies that allow researchers to render an enzyme of interest “activatable” by a pre-chosen compound. Three distinct strategies for targeting an engineered enzyme are discussed: direct chemical “rescue” of an intentionally inactivated enzyme, activation of an enzyme by targeting a de novo small-molecule-binding site, and the generation of activatable enzymes via fusion of target enzymes to previously characterized small-molecule-binding domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koh JT, Zheng J (2007) The new biomimetic chemistry: artificial transcription factors. ACS Chem Biol 2:599–601

    Article  CAS  Google Scholar 

  2. Rowe SP, Casey RJ, Brennan BB et al (2007) Transcriptional up-regulation in cells mediated by a small molecule. J Am Chem Soc 129:10654–10655

    Article  CAS  Google Scholar 

  3. Lindsley JE, Rutter J (2006) Whence cometh the allosterome? Proc Natl Acad Sci USA 103:10533–10535

    Article  CAS  Google Scholar 

  4. Hardy JA, Wells JA (2004) Searching for new allosteric sites in enzymes. Curr Opin Struct Biol 14:706–715

    Article  CAS  Google Scholar 

  5. Matschinsky FM, Glaser B, Magnuson MA (1998) Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes 47:307–315

    Article  CAS  Google Scholar 

  6. de la Iglesia N, Mukhtar M, Seoane J et al (2000) The role of the regulatory protein of glucokinase in the glucose sensory mechanism of the hepatocyte. J Biol Chem 275:10597–10603

    Article  Google Scholar 

  7. Chu CA, Fujimoto Y, Igawa K et al (2004) Rapid translocation of hepatic glucokinase in response to intraduodenal glucose infusion and changes in plasma glucose and insulin in conscious rats. Am J Physiol Gastrointest Liver Physiol 286:G627–G634

    Article  CAS  Google Scholar 

  8. Grimsby J, Sarabu R, Corbett WL et al (2003) Allosteric activators of glucokinase: potential role in diabetes therapy. Science 301:370–373

    Article  CAS  Google Scholar 

  9. Molnes J, Bjorkhaug L, Sovik O et al (2008) Catalytic activation of human glucokinase by substrate binding-residue contacts involved in the binding of D-glucose to the super-open form and conformational transitions. FEBS J 275:2467–2481

    Article  CAS  Google Scholar 

  10. Coghlan M, Leighton B (2008) Glucokinase activators in diabetes management. Expert Opin Investig Drugs 17:145–167

    Article  CAS  Google Scholar 

  11. Johnson TO, Humphries PS (2006) Glucokinase activators for the treatment of type 2 diabetes. Annu Rep Med Chem 41:141–154

    Article  CAS  Google Scholar 

  12. Johnson D, Shepherd RM, Gill D et al (2007) Glucokinase activators: molecular tools for studying the physiology of insulin-secreting cells. Biochem Soc Trans 35:1208–1210

    Article  CAS  Google Scholar 

  13. Futamura M, Hosaka H, Kadotani A et al (2006) An allosteric activator of glucokinase impairs the interaction of glucokinase and glucokinase regulatory protein and regulates glucose metabolism. J Biol Chem 281:37668–37674

    Article  CAS  Google Scholar 

  14. Ralph EC, Thomson J, Almaden J et al (2008) Glucose modulation of glucokinase activation by small molecules. Biochemistry 47:5028–5036

    Article  CAS  Google Scholar 

  15. Kamata K, Mitsuya M, Nishimura T et al (2004) Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure 12:429–438

    Article  CAS  Google Scholar 

  16. Pang T, Zhang ZS, Gu M et al (2008) Small molecule antagonizes autoinhibition and activates AMP-activated protein kinase in cells. J Biol Chem 283:16051–16060

    Article  CAS  Google Scholar 

  17. Mantelingu K, Kishore AH, Balasubramanyam K et al (2007) Activation of p300 histone acetyltransferase by small molecules altering enzyme structure: probed by surface-enhanced Raman spectroscopy. J Phys Chem B 111:4527–4534

    Article  CAS  Google Scholar 

  18. Thakur CS, Jha BK, Dong BH et al (2007) Small-molecule activators of RNase L with broad-spectrum antiviral activity. Proc Natl Acad Sci USA 104:9585–9590

    Article  CAS  Google Scholar 

  19. Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  CAS  Google Scholar 

  20. Wood JG, Rogina B, Lavu S et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  CAS  Google Scholar 

  21. Kaeberlein M, McDonagh T, Heltweg B et al (2005) Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280:17038–17045

    Article  CAS  Google Scholar 

  22. Carter P, Wells JA (1987) Engineering enzyme specificity by substrate-assisted catalysis. Science 237:394–399

    Article  CAS  Google Scholar 

  23. Peracchi A (2008) How (and why) to revive a dead enzyme: the power of chemical rescue. Curr Chem Biol 2:32–49

    Article  CAS  Google Scholar 

  24. Marletta MA (2006) Raising enzymes from the dead and the secrets they can tell. ACS Chem Biol 1:73–74

    Article  CAS  Google Scholar 

  25. Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  Google Scholar 

  26. Williams DM, Wang DX, Cole PA (2000) Chemical rescue of a mutant protein-tyrosine kinase. J Biol Chem 275:38127–38130

    Article  CAS  Google Scholar 

  27. Lowry WE, Huang JY, Ma YC et al (2002) Csk, a critical link of G protein signals to actin cytoskeletal reorganization. Dev Cell 2:733–744

    Article  CAS  Google Scholar 

  28. Madhusoodanan KS, Guo DG, McGarrigle DK et al (2006) Csk mediates G-protein-coupled lysophosphatidic acid receptor-induced inhibition of membrane-bound guanylyl cyclase activity. Biochemistry 45:3396–3403

    Article  CAS  Google Scholar 

  29. Iguchi K, Usui S, Ishida R et al (2002) Imidazole-induced cell death, associated with intracellular acidification, caspase-3 activation, DFF-45 cleavage, but not oligonucleosomal DNA fragmentation. Apoptosis 7:519–525

    Article  CAS  Google Scholar 

  30. Qiao YF, Molina H, Pandey A et al (2006) Chemical rescue of a mutant enzyme in living cells. Science 311:1293–1297

    Article  CAS  Google Scholar 

  31. Yeatman TJ (2004) A renaissance for Src. Nat Rev Cancer 4:470–480

    Article  CAS  Google Scholar 

  32. Hanke JH, Gardner JP, Dow RL et al (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. J Biol Chem 271:695–701

    Article  CAS  Google Scholar 

  33. Erster O, Eisenstein M, Liscovitch M (2007) Ligand interaction scan: a general method for engineering ligand-sensitive protein alleles. Nat Methods 4:393–395

    CAS  Google Scholar 

  34. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    Article  CAS  Google Scholar 

  35. Adams SR, Campbell RE, Gross LA et al (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076

    Article  CAS  Google Scholar 

  36. Gaietta G, Deerinck TJ, Adams SR et al (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    Article  CAS  Google Scholar 

  37. Hoffmann C, Gaietta G, Bunemann M et al (2005) A FlAsH-based FRET approach to determine G protein-coupled receptor activation in living cells. Nat Methods 2:171–176

    Article  CAS  Google Scholar 

  38. Ju W, Morishita W, Tsui J et al (2004) Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 7:244–253

    Article  CAS  Google Scholar 

  39. Zhang XY, Bishop AC (2007) Site-specific incorporation of allosteric-inhibition sites in a protein tyrosine phosphatase. J Am Chem Soc 129:3812–3813

    Article  CAS  Google Scholar 

  40. Pollock R, Clackson T (2002) Dimerizer-regulated gene expression. Curr Opin Biotechnol 13:459–467

    Article  CAS  Google Scholar 

  41. Walsh DP, Chang YT (2006) Chemical genetics. Chem Rev 106:2476–2530

    Article  CAS  Google Scholar 

  42. Bishop A, Buzko O, Heyeck-Dumas S et al (2000) Unnatural ligands for engineered proteins: new tools for chemical genetics. Annu Rev Biophys Biomol Struct 29:577–606

    Article  CAS  Google Scholar 

  43. Schreiber SL (1998) Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg Med Chem 6:1127–1152

    Article  CAS  Google Scholar 

  44. Spencer DM, Graef I, Austin DJ et al (1995) A general strategy for producing conditional alleles of Src-like tyrosine kinases. Proc Natl Acad Sci USA 92:9805–9809

    Article  CAS  Google Scholar 

  45. Li B, Desai SA, MacCorkle-Chosnek RA et al (2002) A novel conditional Akt ‘survival switch’ reversibly protects cells from apoptosis. Gene Ther 9:233–244

    Article  CAS  Google Scholar 

  46. MacCorkle RA, Freeman KW, Spencer DM (1998) Synthetic activation of caspases: artificial death switches. Proc Natl Acad Sci USA 95:3655–3660

    Article  CAS  Google Scholar 

  47. Smith KM, Van Etten RA (2001) Activation of c-Abl kinase activity and transformation by a chemical inducer of dimerization. J Biol Chem 276:24372–24379

    Article  CAS  Google Scholar 

  48. Freeman KW, Gangula RD, Welm BE et al (2003) Conditional activation of fibroblast growth factor receptor (FGFR) 1, but not FGFR2, in prostate cancer cells leads to increased osteopontin induction, extracellular signal-regulated kinase activation, and in vivo proliferation. Cancer Res 63:6237–6243

    CAS  Google Scholar 

  49. Muthuswamy SK, Gilman M, Brugge JS (1999) Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol 19:6845–6857

    CAS  Google Scholar 

  50. Jin LQ, Asano H, Blau CA (1998) Stimulating cell proliferation through the pharmacologic activation of c-kit. Blood 91:890–897

    CAS  Google Scholar 

  51. Yang JX, Symes K, Mercola M et al (1998) Small-molecule control of insulin and PDGF receptor signaling and the role of membrane attachment. Curr Biol 8:11–18

    Article  CAS  Google Scholar 

  52. Pratt MR, Schwartz EC, Muir TW (2007) Small-molecule-mediated rescue of protein function by an inducible proteolytic shunt. Proc Natl Acad Sci USA 104:11209–11214

    Article  CAS  Google Scholar 

  53. Xu W, Doshi A, Lei M et al (1999) Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell 3:629–638

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Institutes of Health (1 R15 GM071388-01A1) and Research Corporation (CC6372) for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Bishop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bishop, A.C., Chen, V.L. Brought to life: targeted activation of enzyme function with small molecules. J Chem Biol 2, 1–9 (2009). https://doi.org/10.1007/s12154-008-0012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-008-0012-4

Keywords

Navigation