Skip to main content

Advertisement

Log in

Genetic alterations in children and adolescents with acute myeloid leukaemia

  • Educational Series
  • Molecular and Cellular Biology of Cancer
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Acute Myeloid Leukemia is a clinically and genetically heterogeneous disease, in which cytogenetic aberrations are the most important factors to determine biological behavior and prognosis. More than 20 different chromosomal abnormalities have been identified in a high percentage of children (70–85%) with the novo AML. We reviewed the most frequently found and the impact of these aberrations on prognosis. Differences according to the age of patients and mainly in relation to adult population have been enhanced, although the low incidence of AML in children and the high number of abnormalities make difficult to accurately define the prognosis significance of these aberrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Raimondi SC, Chang MN, Ravindranath Y et al (1999) Chromosomal abnormalities in 478 children with acute myeloid leukemia: clinical characteristics and treatment outcome in a cooperative Pediatric Oncology Group study-POG. Blood 94:3707–3716

    CAS  PubMed  Google Scholar 

  2. Lapillonne H, Llopis L, Auvrignon A et al (2010) Extensive mutational status of genes and clinical outcome in pediatric acute myeloid leukemia. Leukemia 24: 205–209

    Article  CAS  PubMed  Google Scholar 

  3. Dash A, Gilliland DG (2001) Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol 14: 49–64

    Article  CAS  PubMed  Google Scholar 

  4. Gilliland DG, Griffin JD (2002) The roles of FLT3 in hematopoiesis and leukemia. Blood 100: 1532–1542

    Article  CAS  PubMed  Google Scholar 

  5. Vardiman JW, Thiele J, Arber DA et al (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951

    Article  CAS  PubMed  Google Scholar 

  6. Harrison CJ, Hills RK, Moorman AV et al (2010) Cytogenetics of Childhood Acute Myeloid Leukemia: United Kingdom Medical Research Council Treatment Trials AML 10 and 12. J Clin Oncol 28:2674–2681

    Article  PubMed  Google Scholar 

  7. Creutzig U, Zimmermann M, Ritter J et al (2005) Treatment strategy and long term results in pediatric patients treated in four consecutive AML-BFM trials. Leukemia 19:2030–2042

    Article  CAS  PubMed  Google Scholar 

  8. Entz-Werle N, Suciu S, van der Werff ten Bosch J et al (2005) Results of 58872 and 58921 trials in acute myeloblastic leukemia and relative value of chemotherapy vs allogeneic bone marrow transplantation in first complete remission: the EORTC Children Leukemia Group report. Leukemia 19:2072–2081

    Article  CAS  PubMed  Google Scholar 

  9. Lange BJ, Smith FO, Feusner J et al (2008) Outcomes in CCG-2961, a Children’s Oncology Group Phase 3 trial for untreated pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. Blood 111:1044–1053

    Article  CAS  PubMed  Google Scholar 

  10. Ravindranath Y, Chang M, Steuber CP et al (2005) Pediatric Oncology Group (POG) studies of acute myeloid leukaemia (AML): a review of four consecutive childhood AML trials conducted between 1981 and 2000. Leukemia 19:2101–2116

    Article  CAS  PubMed  Google Scholar 

  11. Betts DR, Ammann RA, Hirt A et al (2007) The prognostic significance of cytogenetic aberrations in childhood acute myeloid leukaemia. A study of the Swiss Paediatric Oncology Group (SPOG). Eur J Haematol 78:468–476

    Article  PubMed  Google Scholar 

  12. Forestier E, Heim S, Blennow E et al (2003) Cytogenetic abnormalities in childhood acute myeloid leukaemia: a Nordic series comprising all children enrolled in the NOPHO-93-AML trial between 1993 and 2001. Br J Haematol 121:566–577

    Article  PubMed  Google Scholar 

  13. Mrózek K, Heerema NA, Bloomfield CD (2004) Cytogenetics in acute leukemia. Blood Rev 18:115–136

    Article  PubMed  Google Scholar 

  14. Forestier E, Schmiegelow K (2006) Nordic Society of Paediatric Haematology and Oncology NOPHO. The incidence peaks of the childhood acute leukemias reflect specific cytogenetic aberrations. J Pediatr Hematol Oncol 28:486–495

    Article  CAS  PubMed  Google Scholar 

  15. Bloomfield CD, Goldman A, Hassfeld D et al (1984) Fourth International Workshop on Chromosomes in Leukemia 1982: Clinical significance of chromosomal abnormalities in acute nonlymphoblastic leukemia. Cancer Genet Cytogenet 11:332–350

    CAS  PubMed  Google Scholar 

  16. Haferlach T, Kern W, Schoch C et al (2004) A new prognostic score for patients with acute myeloid leukemia based on cytogenetics and early blast clearance in trials of the German AML Cooperative Group. Haematologica 89:408–418

    PubMed  Google Scholar 

  17. Byrd JC, Mrozek K, Dodge RK et al (2002) Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100:4325–4336

    Article  CAS  PubMed  Google Scholar 

  18. Slovak ML, Kopecky KJ, Cassileth PA et al (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96:4075–4083

    CAS  PubMed  Google Scholar 

  19. Grimwade D, Hills RK (2009) Independent prognostic factors for AML outcome. Haematology Am Soc Hematol Educ Program 385–395

  20. Kaspers GJL, Zwaan CN (2007) Pediatric acute myeloid leukemia: towards high-quality cure of all patients. Haematologica 92:1519–1532

    Article  PubMed  Google Scholar 

  21. Appelbaum FR, Gundacker H, Head DR et al (2006) Age and acute myeloid leukaemia. Blood 107:3481–3485

    Article  CAS  PubMed  Google Scholar 

  22. Tosi S, Tosi S, Harbott J et al (2000) t(7;12) (q36;p13), a new recurrent translocation involving ETV6 in infant leukemia. Genes Chromosomes Cancer 29:325–332

    Article  CAS  PubMed  Google Scholar 

  23. Slater RM, von Drunen E, Kroes WG et al (2001) t(7;12)(q36;p13) and t(7;12)(q32;p13): Translocations involving ETV6 in children 18 months of age or younger with myeloid disorders. Leukemia 15:915–920

    Article  CAS  PubMed  Google Scholar 

  24. Manola KN (2009) Cytogenetics of pediatric acute myeloid leukemia. Eur J Haematol 83:391–405

    Article  CAS  PubMed  Google Scholar 

  25. von Neuhoff C, Reinhardt D, Sander A et al (2010) Prognostic Impact of Specific Chromosomal Aberrations in a Large Group of Pediatric Patients With Acute Myeloid Leukemia Treated Uniformly According to Trial AML-BFM 98. J Clin Oncol 28:2682–2689

    Article  Google Scholar 

  26. Rubnitz JE, Raimondi SC, Halbert AR et al (2002) Characteristics and outcome of t(8;21)-positive childhood acute myeloid leukemia: a single institution’s experience. Leukemia 16:2072–2077

    Article  CAS  PubMed  Google Scholar 

  27. Alonzo TA, Wells RJ, Woods WG et al (2005) Postremission therapy for children with acute myeloid leukemia: the children’s cancer group experience in the transplant era. Leukmia 19:965–970

    Article  CAS  Google Scholar 

  28. Lie SO, Abrahamsson J, Clausen N et al (2005) Long-term results in children with AML: NOPHO-AML Study Group-report of three consecutive trials. Nordic Society of Pediatric Hematology and Oncology (NOPHO): AML Study Group. Leukemia 19:2090–2100

    Article  CAS  PubMed  Google Scholar 

  29. Rubnitz JE, Raimondi SC, Tong X et al (2002) Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol 20:2302–2309

    Article  CAS  PubMed  Google Scholar 

  30. Balgobind BV, Raimondi SC, Harbott J et al (2009) Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 114:2489–2496

    Article  CAS  PubMed  Google Scholar 

  31. Lugthard S, van Drunen E, van Norden Y et al (2008) High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 111: 4329–4337

    Article  Google Scholar 

  32. Balgobind BV, Lugthart S, Hollink IH et al (2010) EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia 24: 942–949

    Article  CAS  PubMed  Google Scholar 

  33. Meyer S, Fergusson WD, Whetton AD et al (2007) Amplification and translocation of 3q26 with overexpression of EVI1 in Fanconi anemiaderived childhood acute myeloid leukemia with biallelic FANCD1/BRCA2 disruption. Genes Chromosomes Cancer 46:359–372

    Article  CAS  PubMed  Google Scholar 

  34. Haltrich I, Haltrich I, Kost-Alimova M et al (2006) Multipoint interphase FISH analysis of chromosome 3 abnormalities in 28 childhood AML patients. Eur J Haematol 76:124–133

    Article  CAS  PubMed  Google Scholar 

  35. Dastugue N, Lafage-Pochitaloff M, Pages MP et al (2002) Cytogenetic profile of childhood and adult megakaryoblastic leukemia (M7): A study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Blood 100: 618–626

    Article  CAS  PubMed  Google Scholar 

  36. Park J, Kim M, Lim J et al (2009) Three-way complex translocations in infant acute myeloid leukemia with t(7;12)(q36;p13): the incidence and correlation of a HLXB9 overexpression Cancer Genet Cytogenet 191:102–105

    Article  CAS  PubMed  Google Scholar 

  37. Slater RM, von Drunen E, Kroes WG et al (2001) t(7;12)(q36;p13) and t(7;12)(q32;p13)- translocations involving ETV6 in children 18 months of age or younger with myeloid disorders Leukemia 15:915–920

    Article  CAS  PubMed  Google Scholar 

  38. von Bergh AR, van Drunen E, van Wering ER et al (2006) High incidence of t(7;12)(q36;p13) in infant AML but not in infant ALL, with a dismal outcome and ectopic expression of HLXB9. Genes Chromosomes Cancer 45:731–739

    Article  Google Scholar 

  39. Simmons HM, Oseth L, Nguyen P et al (2002) Cytogenetic and molecular heterogeneity of 7q36/12p13 rearrangements in childhood AML. Leukemia 16:2408–2416

    Article  CAS  PubMed  Google Scholar 

  40. Hasle H, Alonzo TA, Auvringon A et al (2007) Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: and in ternational retrospective study. Blood 109:4641–4647

    Article  CAS  PubMed  Google Scholar 

  41. Owen C, Barnett M, Fitzgibbon J (2008) Familial myelodysplasia and acute myeloid leukemia-a review. Br J Haematol 140:123–132

    Article  CAS  PubMed  Google Scholar 

  42. Hama A, Yagasaki H, Takahashi Y et al (2008) Acute megakaryoblastic leukaemia (AMKL) in children: a comparison of AMKL with and without Down syndrome. Br J Haematol 140:552–561

    Article  PubMed  Google Scholar 

  43. Bacher U, Haferlach T, Kern W et al (2007) A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukaemia Haematologica 92:744–752

    Article  CAS  PubMed  Google Scholar 

  44. Zwaan CM, Meshinchi S, Radich JP et al (2003) FLT3 internal tandem duplication in 234 children with acute myeloid leukemia: prognostic significance and relation to cellular drug resistance. Blood 102:2387–2394

    Article  CAS  PubMed  Google Scholar 

  45. Meshinchi S, Alonzo TA, Stirewalt DL et al (2006) Clinical implications of FLT3 mutations in pediatric AML. Blood 108:3654–3661

    Article  CAS  PubMed  Google Scholar 

  46. Meshinchi S, Stirewalt DL, Alonzo TA et al (2008) Structural and numerical variation of FLT3/ITD in pediatric AML. Blood 111:4930–4933

    Article  CAS  PubMed  Google Scholar 

  47. Shimada A, Taki T, Tabuchi K et al (2008) Tandem duplications of MLL and FLT3 are correlated with poor prognoses in pediatric acute myeloid leukemia: a study of the Japanese childhood AML Cooperative Study Group. Pediatr Blood Cancer 50:264–269

    Article  PubMed  Google Scholar 

  48. Thiede C, Steudel C, Mohr B et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335

    Article  CAS  PubMed  Google Scholar 

  49. Falini B, Mecucci C, Tiacci E et al (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352: 254–266

    Article  CAS  PubMed  Google Scholar 

  50. Thiede C, Koch S, Creutzig E et al (2006) Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107: 4011–4020

    Article  CAS  PubMed  Google Scholar 

  51. Brown P, McIntyre E, Rau R et al (2007) The incidence and clinical significance of nucleophosmin mutations in childhood AML. Blood 110:979–985

    Article  CAS  PubMed  Google Scholar 

  52. Hollink IH, Zwaan CM, Zimmermann M et al (2009) Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia 23:262–270

    Article  CAS  PubMed  Google Scholar 

  53. Verhaak RG, Goudswaard CS, van Putten W et al (2005) Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106:3747–3754

    Article  CAS  PubMed  Google Scholar 

  54. Preudhomme C, Sagot C, Boissel N et al (2002) Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia:a study from the Acute Leukemia French Association (ALFA). Blood 100: 2717–2723

    Article  CAS  PubMed  Google Scholar 

  55. Wouters BJ, Lowenberg B, Erpelinck-Verschueren CAJ et al (2009) Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with favorable outcome. Blood 113:3088–3091

    Article  CAS  PubMed  Google Scholar 

  56. Ho PA, Alonzo TA, Gerbing RB et al (2009) Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia (AML): a report from the Children’s Oncology Group. Blood 113: 6558–6566

    Article  CAS  PubMed  Google Scholar 

  57. Schnittger S, Kohl TM, Haferlach T et al (2006) KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 107:1791–1799

    Article  CAS  PubMed  Google Scholar 

  58. Bacher U, Haferlach T, Kern W et al (2007) A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukaemia. Haematologica 92:744–752

    Article  CAS  PubMed  Google Scholar 

  59. Goemans BF, Zwaan CM, Miller M et al (2005) Mutations in KIT and RAS are frequent events in pediatric core-binding factor acute myeloid leukemia. Leukemia 19:1536–1542

    Article  CAS  PubMed  Google Scholar 

  60. Shimada A, Taki T, Tabuchi K et al (2006) KIT mutations, and not FLT3 internal tandem duplication, are strongly associated with a poor prognosis in pediatric acute myeloid leukemia with t(8;21): a study of the Japanese Childhood AML Cooperative Study Group. Blood 107:1806–1809

    Article  CAS  PubMed  Google Scholar 

  61. Keilholz U, Menssen HD, Gaiger A et al (2005) Wilms’ tumour gene 1 (WT1) in human neoplasia. Leukemia 19:1318–1323

    Article  CAS  PubMed  Google Scholar 

  62. Gaidzik VI, Schlenk RF, Moschny S et al (2009) Prognostic impact of WT1 mutations in cytogenetically normal acute myeloid leukemia: a study of the German-Austrian AML Study Group. Blood 113:4505–4511

    Article  CAS  PubMed  Google Scholar 

  63. Lapillonne H, Renneville A, Auvrignon A et al (2006) High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol 24:1507–1515

    Article  CAS  PubMed  Google Scholar 

  64. Boublikova L, Kalinova M, Ryan J et al (2006) Wilms’ tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia: a wide range of WT1 expression levels, its impact on prognosis and minimal residual disease monitoring. Leukemia 20:254–263

    Article  CAS  PubMed  Google Scholar 

  65. Paschka P, Marcucci G, Ruppert AS et al (2008) Wilms tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 26:4595–4602

    Article  CAS  PubMed  Google Scholar 

  66. Hollink IH, van den Heuvel-Eibrink MM, Zimmermann M et al (2009) Clinical relevance of Wilms tumor 1 gene mutations in childhood acute myeloid leukemia. Blood 113:5951–5960

    Article  CAS  PubMed  Google Scholar 

  67. Whitman SP, Ruppert AS, Marcucci G et al (2007) Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication: a Cancer and Leukemia Group B study. Blood 109:5164–5167

    Article  CAS  PubMed  Google Scholar 

  68. Tallman M (2008) Existing and emerging therapeutic options for the treatment of acute myeloid leukemia. Clinical advances in Hematology & Oncology 6(Suppl 18):3–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amparo Verdeguer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdeguer, A. Genetic alterations in children and adolescents with acute myeloid leukaemia. Clin Transl Oncol 12, 590–596 (2010). https://doi.org/10.1007/s12094-010-0563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-010-0563-z

Keywords

Navigation