Skip to main content

Advertisement

Log in

Molecular biology of therapy-related leukaemias

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Therapy-related leukaemias are becoming an increasing healthcare problem as more patients survive their primary cancers. The nature of the causative agent has an important bearing upon the characteristics, biology, time to onset and prognosis of the resultant leukaemia. Agents targeting topoisomerase II induce acute leukaemias with balanced translocations that generally arise within 3 years, often involving the MLL, RUNX1 and RARA loci at 11q23, 21q22 and 17q21 respectively. Chromosomal breakpoints have been found to be preferential sites of topoisomerase II cleavage, which are believed to be repaired by the non-homologous end-joining DNA repair pathway to generate chimaeric oncoproteins that underlie the resultant leukaemias. Therapy-related acute myeloid leukaemias occurring after exposure to antimetabolites and/or alkylating agents are biologically distinct with a longer latency period, being characterised by more complex karyotypes and loss of p53. Although treatment of therapy-related leukaemias represents a considerable challenge due to prior therapy and comorbidities, curative therapy is possible, particularly in those with favourable karyotypic features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kollmannsberger C, Hartman JT, Kanz L, Bokemeyer C (1998) Risk of secondary myeloid leukaemia and myelodysplastic syndrome following standard-dose chemotherapy or high-dose chemotherapy with stem cell support in patients with potentially curable malignancies. J Cancer Res Clin Oncol 124:207–214

    Article  CAS  PubMed  Google Scholar 

  2. Rowley JD, Golomb HM, Vardiman JW (1977) Nonrandom chromosomal abnormalities in acute nonlymphocytic leukemia in patients treated for Hodgkin’s disease and non-Hodgkin’s lymphoma. Blood 50:759–770

    Google Scholar 

  3. Leone G, Luca M, Alessandro P et al (1999) The incidence of secondary leukaemias. Haematologica 84:937–945

    CAS  PubMed  Google Scholar 

  4. Pedersen-Bjergaard J, Andersen MK, Christiansen DH, Nerlov C (2002) Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia Blood 99:1909–1912

    Article  CAS  PubMed  Google Scholar 

  5. Harris NL Jaffe ES, Diebold J et al (1999) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting. Airlie House, Virginia, November 1997. J Clin Oncol 17:3835–3849

    CAS  PubMed  Google Scholar 

  6. Rowley JD, Olney H (2002) International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer 33: 331–345

    Article  PubMed  Google Scholar 

  7. Ahuja HG, Felix CA, Aplan PD (2000) Potential role of DNA topoisomerase II poisons in the generation of t(11;20)(p15;q11) translocations. Genes Chromosomes Cancer 29:96–105

    Article  CAS  PubMed  Google Scholar 

  8. Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH (2008) Genetics of therapy related myelodysplasia and acute myeloid leukemia. Leukemia 22:240–248

    Article  CAS  PubMed  Google Scholar 

  9. Swerdlow SH, Campo E, Harris NL et al (eds) (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC, Lyon

    Google Scholar 

  10. Carli PM, Sgro C, Parchin-Geneste N et al (2000) Increase therapy-related leukemia secondary to breast cancer. Leukemia 14:1014–1017

    Article  CAS  PubMed  Google Scholar 

  11. Beaumont M, Sanz M, Carli PM et al (2003) Therapy-related acute promyelocytic leukemia. J Clin Oncol 21:2123–2137

    Article  CAS  PubMed  Google Scholar 

  12. Sanz MA, Grimwade D, Tallman MS et al (2009) Management of acute promyelocytic leukemia: Recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113:1875–1891

    Article  CAS  PubMed  Google Scholar 

  13. Grimwade D, Hills RK (2009) Independent prognostic factors for AML outcome. Hematology Am Soc Hematol Educ Program 385–395

  14. Hartwell LH, Hood L, Goldberg ML et al (2006) Genetics: from genes to genomes, 3rd edn. McGraw-Hill Science, New York

    Google Scholar 

  15. Osheroff N, Zechiedrich LE, Gale KC (1991) Catalytic function of DNA topoisomerase II. BioEssays 13:269–273

    Article  CAS  PubMed  Google Scholar 

  16. McClendin K, Osheroff N (2007) DNA topoisomerase II, genotoxicity, and cancer. Mutat Res 623:83–97

    Google Scholar 

  17. Burden A, Osheroff N (1998) Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim Biophys Acta 1400:139–154

    CAS  PubMed  Google Scholar 

  18. Zechiedrich EL, Osheroff N (1990) Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J 9:4555–4562

    CAS  PubMed  Google Scholar 

  19. Hagerman PJ (1988) Flexibility of DNA. Annu Rev Biophys Chem 17:265–286

    Article  CAS  Google Scholar 

  20. Spitzner JR, Muller MT (1988) A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acids Res 16:5533–5556

    Article  CAS  PubMed  Google Scholar 

  21. Deweese JE, Osheroff N (2008) The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res 37:738–748

    Article  PubMed  CAS  Google Scholar 

  22. Deweese JE, Osheroff MA, Osheroff N (2009) DNA topology and topoisomerases: teaching a knotty subject. Biochem Mol Biol Educ 37:2–10

    Article  CAS  Google Scholar 

  23. Baguley BC, Ferguson LR (1998) Mutagenetic properties of topoisomerase-targeted drugs. Biochim Biophys Acta 1400:213–222

    CAS  PubMed  Google Scholar 

  24. Sander M, Hsieh T (1982) Double strand DNA cleavage by type ll DNA topoisomerase from Drosophila melanogaster. J Biol Chem 285:8421–8428

    Google Scholar 

  25. Muller BU, Spitzner JR, DiDonato JA et al (1988) Single-strand DNA cleaves by eukaryotic topoisomerase ll. Biochemistry 27:8369–8379

    Article  CAS  PubMed  Google Scholar 

  26. Liu LF, Rowe TC, Yang L et al (1983) Cleavage of DNA by mammalian DNA topoisomerase ll. J Biol Chem 258:15365–15370

    CAS  PubMed  Google Scholar 

  27. Felix CA (2001) Leukemias related to treatment with DNA topoisomerase II inhibitors. Med Pediatr Oncol 36:525–535

    Article  CAS  PubMed  Google Scholar 

  28. Allan JM, Travis LB (2005) Mechanisms of therapy related carcinogenesis. Nat Rev 5:943–955

    CAS  Google Scholar 

  29. Mori H, Colman SM, Xiao Z et al (2002) Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci U S A 99:8242–8247

    Article  CAS  PubMed  Google Scholar 

  30. Basecke J, Cepek L, Mannhalter C et al (2002) Transcription of AML1/ETO in bone marrow and cord blood of individuals without acute myelogenous leukemia. Blood 100:2267–2268

    Article  CAS  PubMed  Google Scholar 

  31. Stanulla M, Wang J, Chervinsky DS et al (1997) DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis. Mol Cell Biol 17:4070–4079

    CAS  PubMed  Google Scholar 

  32. Betti CJ, Villalobos MJ, Diaz MO, Vaughan AT (2001) Apoptotic triggers initiate translocations within the MLL gene involving non-homologous end joining repair system. Cancer Res 61:4550–4555

    CAS  PubMed  Google Scholar 

  33. Sim SP, Liu LF (2001) Nucleolytic cleavage of the mixed lineage leukemia breakpoint cluster region during apoptosis. J Biol Chem 276:31590–31595

    Article  CAS  PubMed  Google Scholar 

  34. Betti CJ, Villalobos MJ, Diaz MO, Vaughan AT (2003) Apoptotic stimuli initiate MLL-AF9 translocations that are transcribed in cells capable of division. Cancer Res 63:1377–1381

    CAS  PubMed  Google Scholar 

  35. Felix CA, Kolaris CP, Osheroff N (2006) Topoisomerase II and the etiology of chromosomal translocations. DNA Repair (Amst) 5:1093–1108

    Article  CAS  Google Scholar 

  36. Lovett BD, Strumberg D, Blair IA et al (2001) Etoposide metabolites enhance DNA topoisomerase II cleavage near leukemia-associated MLL translocation breakpoints. Biochemistry 40:1159–1170

    Article  CAS  PubMed  Google Scholar 

  37. Lovett BD, Lo Nigro L, Rappaport EF et al (2001) Near-precise interchromosomal recombination and functional DNA topoisomerase II cleavage sites at MLL and AF-4 genomic breakpoints in treatment-related acute lymphoblastic leukemia with t(4;11) translocation. Proc Natl Acad Sci U S A 98:9802–9807

    Article  CAS  PubMed  Google Scholar 

  38. Whitmarsh RJ, Saginario C, Zhuo Y et al (2003) Reciprocal DNA topoisomerase II cleavage events at 5′-TATTA-3′ sequences in MLL and AF-9 create homologous single-stranded overhangs that anneal to form der(11) and der(9) genomic breakpoint junctions in treatment-related AML without further processing. Oncogene 22:8448–8459

    Article  CAS  PubMed  Google Scholar 

  39. Mistry AR, Felix CA, Whitmarsh RJ et al (2005) DNA topoisomerase II in therapy related acute promyelocytic leukemia. N Engl J Med 352:1529–1538

    Article  CAS  PubMed  Google Scholar 

  40. Fortune JM, Osheroff N (2000) Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog Nucleic Acid Res Mol Biol 64:221–253

    Article  CAS  PubMed  Google Scholar 

  41. Hasan SK, Mays AN, Ottone T et al (2008) Molecular analysis of t(15;17) genomic breakpoints in secondary acute promyelocytic leukemia arising after treatment of multiple sclerosis. Blood 112:3383–3390

    Article  CAS  PubMed  Google Scholar 

  42. Mays AN, Osheroff N, Xiao Y et al (2009) Evidence for direct involvement of epirubicin in the formation of chromosomal translocations in t(15;17) therapy-related acute promyelocytic leukemia. Blood [Epub ahead of print]

  43. Ghalie RG, Mauch E, Edan G et al (2002) A study of therapy-related acute leukaemia after mitoxantrone therapy for multiple sclerosis. Mult Scler 8:441–445

    Article  CAS  PubMed  Google Scholar 

  44. Pedersen-Bjergaard J, Specht L, Larsen SO et al (1987) Risk of therapy-related leukaemia and preleukaemia after Hodgkins disease. Relation to age, cumulative dose of alkylating agents and time from chemotherapy. Lancet 2:83–88

    Article  CAS  PubMed  Google Scholar 

  45. Saffhill R, Margison GP, O’Connor PJ (1985) Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophys Acta 823:111–145

    CAS  PubMed  Google Scholar 

  46. Davis SM (2001) Therapy-related leukemia associated with alkylating agents. Med Paediatr Oncol 36:536–540

    Article  Google Scholar 

  47. Worrillow LJ, Allan JM (2006) Deregulation of homologous recombination DNA repair in alkylating agent-treated stem cell clones: a possible role in the aetiology of chemotherapy-induced leukaemia. Oncogene 25:1709–1720

    Article  CAS  PubMed  Google Scholar 

  48. Brooks P, Lawley PD (1961) The reaction of mono- and di-functional alkylating agents with nucleic acids. Biochem J 80:496–503

    Google Scholar 

  49. Chaney SG, Sancar A (1996) DNA repair: enzymatic mechanism and relevance to drug response. J Natl Cancer Inst 88:1346–1360

    Article  CAS  PubMed  Google Scholar 

  50. Drablos F, Feyzi E, Aas PA et al (2004) Alkylation damage in DNA and RNA—repair mechanism and medical significance. DNA Repair (Amst) 3:1389–1407

    Article  CAS  Google Scholar 

  51. Dann EJ, Rowe RM (2001) Biology and therapy of secondary leukaemias. Best Pract Res Clin Haematol 14:119–137

    Article  CAS  PubMed  Google Scholar 

  52. Kyle RA, Pierre RV, Bayrd ED (1975) Multiple myeloma and acute leukaemia associated with alkylating agents. Arch Intern Med 135:185–192

    Article  CAS  PubMed  Google Scholar 

  53. Karran P, Offman J, Bignami M (2003) Human mismatch repair, drug-induced DNA damage, and secondary cancer. Biochemie 85:1149–1160

    Article  CAS  Google Scholar 

  54. Smith MA, McCaffrey RP, Karp JE (1996) The secondary leukaemias: challenges and research directions. J Natl Cancer Inst 88:407–413

    Article  CAS  PubMed  Google Scholar 

  55. Ebert BL (2009) Deletion 5q in myelodysplastic syndrome: a paradigm for the study of hemizygous deletions in cancer. Leukemia 23:1252–1256

    Article  CAS  PubMed  Google Scholar 

  56. Liu TX, Becker MW, Jelinek J et al (2007) Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat Med 13:78–83

    Article  PubMed  CAS  Google Scholar 

  57. Ebert BL, Pretz J, Bosco J et al (2008) Identification of RPS14 as a 5q-syndrome gene by RNA interference screen. Nature 451:335–339

    Article  CAS  PubMed  Google Scholar 

  58. Starczynowski DT, Kuchenbauer F, Argiropoulos B et al (2009) Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat Med [Epub ahead of print]

  59. Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2001) Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukaemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype and poor prognosis. J Clin Oncol 19: 1405–1413

    CAS  PubMed  Google Scholar 

  60. Pui CH, Riberio C, Hancock ML et al (1991) Acute myeloid leukemia in children treated with epipodophyllotoxins for acute lymphoblastic leukemia. N Engl J Med 325:1682–1687

    Article  CAS  PubMed  Google Scholar 

  61. Praga C, Bergh J, Bliss J et al (2005) Risk of acute myeloid leukemia and myelodysplastic syndrome in trials of adjuvant epirubicin for early breast cancer: Correlation with doses of epirubicin and cyclophosphamide. J Clin Oncol 23:4179–4191

    Article  CAS  PubMed  Google Scholar 

  62. Seedhouse C, Russell N (2007) Advances in the understanding of susceptibility to treatment-related acute myeloid leukaemia. Br J Haematol 137: 513–529

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Grimwade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joannides, M., Grimwade, D. Molecular biology of therapy-related leukaemias. Clin Transl Oncol 12, 8–14 (2010). https://doi.org/10.1007/s12094-010-0460-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-010-0460-5

Keywords

Navigation