Skip to main content

Advertisement

Log in

The proteasome: a novel target for anticancer therapy

  • Educational Series
  • Green Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

The proteasome is an ubiquituous enzyme complex that plays a critical role in the degradation of many proteins involved in cell cycle regulation, apoptosis and angiogenesis. Since these pathways are fundamental for cell survival and proliferation, particularly in cancer cells, the inhibition of proteasome is an attractive potential anticancer therapy. Bortezomib (Velcade, formerly PS-341) is an extremely potent and selective proteasome inhibitor that shows strong activity inin vitro andin vivo laboratory studies against many solid and hematologic tumor types. Moreover, bortezomib, mainly by inhibition of the NF-κB pathway, has a chemosensitizing effect when administered together with other antitumoral drugs. Clinical phase I trials, showed good tolerance of bortezomib at doses that achieved a desired degree of proteasome inhibition. Phase II studies showed high response rates in refractory multiple myeloma patients, which led to the accelerated approval of bortezomib by the Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) for this indication. A phase III trial comparing bortezomib to dexamethasone in refractory/relapsed multiple myeloma patients had to be halted due to a survival advantage in the bortezomib arm. Additional studies are focusing in the potential benefit of bortezomib in newly diagnosed multiple myeloma patients. In other solid and hematological malignancies, phase II studies with bortezomib alone or in combination are ongoing with encouraging results, particularly in lung cancer and lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shah SA, Potter MW, McDade TP, et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem. 2001;82:110–22.

    Article  PubMed  CAS  Google Scholar 

  2. Wu Y, Luo H, Kanaan N, et al. The proteasome controls the expression of a proliferation-associated nuclear antigen Ki-67, J Cell Biochem, 2000;76:596–604.

    Article  PubMed  CAS  Google Scholar 

  3. Naujokat C, Sezer O, Zinke H, et al. Proteasome inhibitors induced caspase-dependent apoptosis and accumulation of p21 WAF1/Cipl in human immature leukemic cells. Eur J Haematol. 2000;65:221–56.

    Article  PubMed  CAS  Google Scholar 

  4. Maki CG, Huibregtse JM, Howley PM.In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res, 1996;56:2649–54.

    PubMed  CAS  Google Scholar 

  5. An WG, Hwang SG, Trepel JB, et al. Protease inhibitor-induced apoptosis: accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia. 2000;14:1276–83.

    Article  PubMed  CAS  Google Scholar 

  6. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life, Embo J. 1998;17:7151–60.

    Article  PubMed  CAS  Google Scholar 

  7. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001;70:503–53.

    Article  PubMed  CAS  Google Scholar 

  8. Brooks P, Fuertes G, Murray RZ, et al. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem J. 2000;346 Pt 1: 155–61.

    Article  PubMed  CAS  Google Scholar 

  9. Glickman MH, Rubin DM, Coux O, et al. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell. 1998;94:615–23.

    Article  PubMed  CAS  Google Scholar 

  10. Thrower JS, Hoffman L, Rechsteiner M, et al. Recognition of the polyubiquitin proteolytic signal. Embo J. 2000;19:94–102.

    Article  PubMed  CAS  Google Scholar 

  11. Nussbaum AK, Dick TP, Keilholz W, et al. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Natl Acad Sci U S A. 1998;95:12504–9.

    Article  PubMed  CAS  Google Scholar 

  12. DeMartino GN, Slaughter CA. The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem. 1999;274: 22123–6.

    Article  PubMed  CAS  Google Scholar 

  13. Zwickl P, Voges D, Baumeister W. The proteasome: a macromolecular assembly designed for controlled proteolysis. Philos Trans R Soc Lond B Biol Sci. 1999;354: 1501–11.

    Article  PubMed  CAS  Google Scholar 

  14. Adams J. Proteasome inhibitors as new anticancer drugs. Curr Opin Oncol. 2002;14: 628–34.

    Article  PubMed  CAS  Google Scholar 

  15. Gerards WL, de Jong WW, Boelens W, et al. Structure and assembly of the 20S proteasome. Cell Mol Life Sci. 1998;54:253–62.

    Article  PubMed  CAS  Google Scholar 

  16. Arrigo AP, Tanaka K, Goldberg AL, et al. Identity of the 19S «prosome» particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature. 1988;531:192–4.

    Article  Google Scholar 

  17. Tan C, Waldmann TA. Proteasome inhibitor PS-541, a potential therapeutic agent for adult T-cell leukemia. Cancer Res. 2002;62:1085–6.

    Google Scholar 

  18. Adams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999;59:2615–22.

    PubMed  CAS  Google Scholar 

  19. Montagut C, Rovira A, Mellado B, et al. Preclinical and clinical development of the proteasome inhibitor bortezomib in cancer treatment. Drugs Today (Barc). 2005; 41:299–315.

    Article  CAS  Google Scholar 

  20. Albanell J, Adams J. Bortezomib, a proteasome inhibitor for cancer therapy: from concept to clinic. Drugs of the Future. 2002;27:1–14.

    Article  Google Scholar 

  21. Delic J, Masdehors P, Omura S, et al. The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis. Br J Cancer. 1998;77:1103–7.

    PubMed  CAS  Google Scholar 

  22. Kudo Y, Takata T, Ogawa I, et al. p27Kip1 accumulation by inhibition of proteasome function induces apoptosis in oral squamous cell carcinoma cells. Clin Cancer Res. 2000;6:916–23.

    PubMed  CAS  Google Scholar 

  23. Masdehors P, Omura S, Merle-Beral H, et al. Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin. Br J Haematol. 1999;105:752–7.

    Article  PubMed  CAS  Google Scholar 

  24. Soligo D, Servida F, Delia D, et al. The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. Br J Haematol. 2001;115:126–35.

    Article  Google Scholar 

  25. Orlowski RZ, Eswara JR, Lafond-Walker A, et al. Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor. Cancer Res. 1998;58:4542–8.

    Google Scholar 

  26. Hideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS-541 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 2001;61:5071–6.

    Google Scholar 

  27. Masdehors P, Merle-Beral H, Maloum K, et al. Deregulation of the ubiquitin system and p55 proteolysis modify the apoptotic response in B-CLL lymphocytes. Blood. 2000;96:269–74.

    PubMed  CAS  Google Scholar 

  28. Pérez-Soler R, Kemp B, Wu QP, et al. Response and determinants of sensitivity to paclitaxel in human non-small cell lung cancer tumors heterotransplanted in nude mice. Clin Cancer Res. 2000;6:4952–8.

    Google Scholar 

  29. Kanayama H, Tanaka K, Aki M, et al. Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells. Cancer Res. 1991;51:6677–85.

    PubMed  CAS  Google Scholar 

  30. Kumatori A, Tanaka K, Tamura T, et al. cDNA cloning and sequencing of component C9 of proteasomes from rat hepatoma cells. FEBS Lett. 1990;264:279–82.

    Article  PubMed  CAS  Google Scholar 

  31. Oikawa T, Sasaki T, Nakamura M, et al. The proteasome is involved in angiogenesis. Biochem Biophys Res Commun. 1998; 246:243–8.

    Article  PubMed  CAS  Google Scholar 

  32. Drexler HC, Risau W, Konerding MA. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. Faseb J. 2000;14:65–77.

    PubMed  CAS  Google Scholar 

  33. Berenson JR, Ma HM, Vescio R. The role of nuclear factor-kappaB in the biology and treatment of multiple myeloma. Semin Oncol. 2001;28:626–33.

    Article  PubMed  CAS  Google Scholar 

  34. Guzmán ML, Neering SJ, Upchurch D, et al Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98: 2501–7.

    Article  Google Scholar 

  35. Biswas DK, Shi Q, Baily S, et al. NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci U S A. 2004;101:10157–42.

    Article  Google Scholar 

  36. Domingo-Doménech J, Mellado B, Ferrer B, et al. Activation of nuclear factor-kappaB in human prostate carcinogensis and association to biochemical relapse. Br J Cancer. 2005;95:1285–94.

    Article  CAS  Google Scholar 

  37. Sunwoo JB, Chen Z, Dong G, et al. Novel proteasome inhibitor PS-541 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res. 2001;7:1419–28.

    PubMed  CAS  Google Scholar 

  38. Cusack JC, Jr., Liu R, Houston M, et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res. 2001;61:3535–40.

    PubMed  CAS  Google Scholar 

  39. Das KC, White CW. Activation of NF-kappaB by antineoplastic agents. Role of protein kinase C. J Biol Chem. 1997;272: 14914–20.

    Article  PubMed  CAS  Google Scholar 

  40. Karin M, Cao Y, Greten FR, et al. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:501–10.

    Article  CAS  Google Scholar 

  41. Wang CY, Cusack JC Jr., Liu R, et al. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med. 1999;5:412–7.

    Article  PubMed  CAS  Google Scholar 

  42. Mitsiades N, Mitsiades CS, Richardson PG, et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2005;101:2577–80.

    Google Scholar 

  43. Bold RJ, Virudachalam S, McConkey DJ. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res. 2001;100:11–7.

    Article  PubMed  CAS  Google Scholar 

  44. Nawrocki ST, Sweeney-Gotsch B, Takamori R, et al. The proteasome inhibitor bortezomib enhances the activity of docetaxel in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther. 2004;5: 59–70.

    Google Scholar 

  45. Adams J, Behnke M, Chen S, et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett. 1998;8:333–8.

    Article  PubMed  CAS  Google Scholar 

  46. Bogyo M, Gaczynska M, Ploegh HL. Proteasome inhibitors and antigen presentation. Biopolymers. 1997;43:269–80.

    Article  PubMed  CAS  Google Scholar 

  47. Groll M, Koguchi Y, Huber R, et al. Crystal structure of the 20 S proteasome: TMC-95A complex: a non-covalent proteasome inhibitor. J Mol Biol. 2001;511: 545–8.

    Google Scholar 

  48. Meng L, Kwok BH, Sin N, et al. Eponemycin exerts its antitumor effect through the inhibition of proteasome function. Cancer Res. 1999;59:2798–801.

    PubMed  CAS  Google Scholar 

  49. Fenteany G, Standaert RF, Lane WS, et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science. 1995;268:726–31.

    Article  PubMed  CAS  Google Scholar 

  50. Kozlowski L, Stoklosa T, Omura S, et al. Lactacystin inhibits cathepsin A activity in melanoma cell lines. Tumour Biol. 2001; 22:211–5.

    Article  PubMed  CAS  Google Scholar 

  51. Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol. 2001;8:739–58.

    Article  PubMed  CAS  Google Scholar 

  52. Aghajanian C, Soignet S, Dizon DS, et al. A phase 1 trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res. 2002;8:2505–11.

    PubMed  CAS  Google Scholar 

  53. Papandreou CN, Daliani DD, Nix D, et al. Phase I trial of the proleasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol. 2004;22:2108–21.

    Article  PubMed  CAS  Google Scholar 

  54. Orlowski RZ, Stinchcombe TE, Mitchell BS, et al. Phase 1 trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol. 2002;20:4420–7.

    Article  PubMed  CAS  Google Scholar 

  55. Cortes J, Thomas D, Koller C, et al. Phase I study of bortezomib in refractory or relapsed acute leukemias. Clin Cancer Res. 2004;348:2609–17.

    Google Scholar 

  56. Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myetoma. N Engl J Med. 2005;352:2487–98.

    Article  PubMed  CAS  Google Scholar 

  57. Oakervee HE, Popat R, Curry N, et al. PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol. 2005;129: 755–62.

    Article  PubMed  CAS  Google Scholar 

  58. Jagannath S, Durie BG, Wolf J, et al. Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol. 2005;129:776–85.

    Article  PubMed  CAS  Google Scholar 

  59. Goy A, Younes A, McLaughlin P, et al. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin's lymphoma. J Clin Oncol. 2005;25:667–75.

    Article  CAS  Google Scholar 

  60. O'Connor OA. Marked clinical activity of the proteasome inhibitor bortezomib in patients with follicular and mantle-cell lymphoma. Clin Lymphoma Myeloma. 2005; 6:191–9.

    Article  PubMed  Google Scholar 

  61. Davis NB, Taber DA, Ansari RH, et al. Phase II trial of PS-541 in patients with renal cell cancer: a University of Chicago phase II consortium study. J Clin Oncol. 2004;22:115–9.

    Article  PubMed  CAS  Google Scholar 

  62. Kondagunta GV, Drucker B, Schwartz L, et al. Phase II trial of bortezomib for patients with advanced renal cell carcinoma. J Clin Oncol. 2004;22:3720–5.

    Article  PubMed  CAS  Google Scholar 

  63. Stevenson JP, Nho CW, Johnson SW, et al. Effects of bortezomib (PS-541) of NF-κB activation in peripheral blood mononuclear cells (PBMCs) of advanced nonsmall lung cancer (NSCLC) patients: A phase II/pharmacodynamic trial. Proc Am Soc Clin Oncol. 2004; abstr. 7145.

  64. Albanell J, Baselga J, Guix M, et al. Phase I study of bortezomib in combination with docetaxel in anthracycline-pretreated advanced breast cancer. Proc Am Soc Clin Oncol. 2003; abstr. 63.

  65. Codony-Servat J, Tapia MA, Bosch M, et al. Differential cellular and molecular effects of bortezomib, a proteasome inhibitor, in human breast cancer cells. Mol Cancer Ther. 2006;5:665–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Albanell.

Additional information

Supported by an unrestricted educational grant from Pfizer.

This work was supported in part by Spanish Science and Technology Ministry (MCYT) SAF 2003/08181.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montagut, C., Rovira, A. & Albanell, J. The proteasome: a novel target for anticancer therapy. Clin Transl Oncol 8, 313–317 (2006). https://doi.org/10.1007/s12094-006-0176-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-006-0176-8

Key words

Navigation