Skip to main content

Advertisement

Log in

Migration, coherence and persistence in a fragmented landscape

  • Original Paper
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

The chance of local extinction is high during periods of small population size. Accordingly, a metapopulation made of local communities that support internal population cycling may face the threat of regional extinction if the local dynamics is coherent (synchronized). These systems achieve maximum sustainability at an intermediate level of migration that allows recolonization but prevents synchronization. Here we implement an individual-based simulation technique to examine the maximum persistence condition for a system of patch habitats connected by passive migration. The models discussed in this paper take into consideration realistic elements of metapopulations, such as migration cost, disordered spatial structure, frustration and environmental noise. It turns out that the state with maximum anti-correlation between neighboring patches is the most sustainable one, even in the presence of these complications. The results suggest, at least for small systems, a model independent conservation strategy: coherence between neighboring local communities has, in general, a negative impact, and population will benefit from intervention that increases anti-correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbott KC (2011) A dispersal-induced paradox: synchrony and stability in stochastic metapopulations. Ecol Lett. doi:10.1111/j.1461-0248.2011.01670.x.

    PubMed  Google Scholar 

  • Abta R, Schiffer M, Shnerb NM (2007) Amplitude-dependent frequency, desynchronization, and stabilization in noisy metapopulation dynamics. Phys Rev Lett 98:098,104

    Article  Google Scholar 

  • Abta R, Schiffer M, Ben-Ishay A, Shnerb NM (2008) Stabilization of metapopulation cycles: toward a classification scheme. Theor Popul Biol 74(3):273–282

    Article  PubMed  Google Scholar 

  • Adler FR (1993) Migration alone can produce persistence of host-parasitoid models. Am Nat 141:642–650

    Article  Google Scholar 

  • Allen JC, Schaffer WM, Rosko D (1993) Chaos reduces species extinction by amplifying local population noise. Nature 364:229–232

    Article  PubMed  CAS  Google Scholar 

  • Andren H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71(3):355–366

    Article  Google Scholar 

  • Barkham JP, Hance CE (1982) Population dynamics of the wild daffodil (narcissus pseudonarcissus) iii. implications of a computer model of 1000 years of population change. J Ecol 70:323

    Article  Google Scholar 

  • Bascompte J, Sole RV (1996) Habitat fragmentation and extinction thresholds in spatially explicit models. J Anim Ecol 65(4):465–473

    Article  Google Scholar 

  • Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conserv Biol 12(6):1241–1252

    Article  Google Scholar 

  • Ben-Zion Y, Cohen Y, Shnerb NM (2010a) Modeling epidemics dynamics on heterogenous networks. J Theor Biol 264(2):197–204

    Article  PubMed  Google Scholar 

  • Ben-Zion Y, Yaari G, Shnerb NM (2010b) Optimizing metapopulation sustainability through a checkerboard strategy. PLoS Comput Biol 6(1):e1000,643

    Article  Google Scholar 

  • Bonsall M, Hastings A (2004) Demographic and environmental stochasticity in predator-prey metapopulation dynamics. J Anim Ecol 73:1043–1055

    Article  Google Scholar 

  • Briggs C, Hoopes M (2004) Stabilizing effects in spatial parasitoid-host and predator-prey models: a review. Theor Popul Biol 65:299–315

    Article  PubMed  Google Scholar 

  • Comins H, Hamilton W, May R (1980) Evolutionary stable dispersal strategies. J Theor Biol 82:82

    Article  Google Scholar 

  • Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14(2):342–355

    Article  Google Scholar 

  • Dey S, Joshi A (2006) Stability via asynchrony in drosophila metapopulations with low migration rates. Science 312(5772):434–436

    Article  PubMed  CAS  Google Scholar 

  • Durrett R, Levin SA (1994) Stochastic spatial models: a user’s guide to ecological applications. Philos Trans R Soc London 343:327

    Google Scholar 

  • Earn DJ, Levin SA, Rohani P (2000) Coherence and conservation. Science 290(5495):1360

    Article  PubMed  CAS  Google Scholar 

  • Elgart V, Kamenev A (2004) Rare event statistics in reaction-diffusion systems. Phys Rev E 70(4):41,106

    Article  Google Scholar 

  • Ellner SP, McCauley E, Kendall BE, Briggs CJ, Hosseini PR, Wood SN, Janssen A, Sabelis MW, Turchin P, Nisbet RM, Murdoch WW (2001) Habitat structure and population persistence in an experimental community. Nature 412:538–543

    Article  PubMed  CAS  Google Scholar 

  • Etienne RS, ter Braak CJ, Vos CC (2004) Application of stochastic patch occupancy models to real metapopulations. Ecology, Genetics, and Evolution of Metapopulations, p 105–132

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Gonzalez A, Lawton JH, Gilbert FS, Blackburn TM, Evans-Freke I (1998) Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281(5385):2045

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature 269(5629):578–581

    Article  Google Scholar 

  • Hanski I (1991) Single-species metapopulation dynamics: concepts, models and observations. Biol J Linn Soc 42(1–2):17–38

    Article  Google Scholar 

  • Hanski I (1994a) Patch-occupancy dynamics in fragmented landscapes. Trends Ecol Evol 9(4):131–135

    Article  CAS  Google Scholar 

  • Hanski I (1994b) A practical model of metapopulation dynamics. J Anim Ecol 63(1):151–162

    Article  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, USA

    Google Scholar 

  • Hanski I, Gilpin M (1991) Metapopulation dynamics - brief-history and conceptual domain. Biol J Linn Soc 42:3–16

    Article  Google Scholar 

  • Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758

    Article  PubMed  CAS  Google Scholar 

  • Hastings A (1996) Population biology: concepts and models. Springer

  • Hastings A, Wysham DB (2010) Regime shifts in ecological systems can occur with no warning. Ecol Lett 13(4):464–472

    Article  PubMed  Google Scholar 

  • Heino M, Kaitala V, Ranta E, Lindström J (1997) Synchronous dynamics and rates of extinction in spatially structured populations. In: Proceedings of the Royal Society of London Series B: Biological Sciences 264(1381):481–486

  • Holland MD, Hastings A (2008) Strong effect of dispersal network structure on ecological dynamics. Nature 456:792–794

    Article  PubMed  CAS  Google Scholar 

  • Holling CS (1965) The functional response of predators to prey density and its role in mimicry and population regulation. Mem Entomol Soc Can 45(1):60

    Google Scholar 

  • Holyoak M, Lawler SP (1996) Persistence of an extinction-prone predator-prey interaction through metapopulation dynamics. Ecology 77(6):1867–1879

    Article  Google Scholar 

  • Kaneko K (1990a) Clustering, coding, switching, hierarchical ordering, and control in network of chaotic elements. Physica D 41:137–172

    Article  Google Scholar 

  • Kaneko K (1990b) Globally coupled chaos violates law of large numbers. Phys Rev Lett 65:1391–1394

    Article  PubMed  Google Scholar 

  • Kaneko K, Tsuda I (2000) Complex systems: chaos and beyond. Springer, New York

    Google Scholar 

  • Kareiva P (1987) Habitat fragmentation and the stability of predator-prey interactions. Nature 326:388–390

    Article  Google Scholar 

  • Keeling M, Wilson H, Pacala S (2000) Reinterpreting space, time lags, and functional responses in ecological models. Science 290:1758–1761

    Article  PubMed  CAS  Google Scholar 

  • Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418:171–174

    Article  PubMed  CAS  Google Scholar 

  • Kerr B, Neuhauser C, Bohannan BJM, Dean AM (2006) Local migration promotes competitive restraint in a host-pathogen ‘tragedy of the commons’. Nature 442:75–78

    Article  PubMed  CAS  Google Scholar 

  • Kessler DA, Shnerb NM (2007) Extinction rates for fluctuation-induced metastabilities: a real-space wkb approach. J Stat Phys 127(5):861–886

    Article  Google Scholar 

  • Kessler DA, Shnerb NM (2010) Globally coupled chaotic maps and demographic stochasticity. Phys Rev E 81(3):036,111

    Article  Google Scholar 

  • Keymer JE, Marquet PA, Velasco-Hernandez JX, Levin SA (2000) Extinction thresholds and metapopulation persistence in dynamic landscapes. Am Nat 156(5):478–494

    Article  Google Scholar 

  • Kneitel J, Miller T (2003) Dispersal rates affect species composition in metacommunities of sarracenia purpurea inquilines. Am Nat 162(2):165–171

    Article  PubMed  Google Scholar 

  • Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264(5165):1581

    Article  PubMed  CAS  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240

    Google Scholar 

  • Liebhold A, Koenig WD, Bjornstad ON (2004) Spatial synchrony in population dynamics. Annu Rev Ecol Evol Syst 35:467–490

    Article  Google Scholar 

  • Lindenmayer D, Fischer J (2006) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island Press

  • Lotka AJ (1920) Analytical note on certain rhythmic relations in organic systems. Proc Natl Acad Sci U S A 6(7):410–415

    Article  PubMed  CAS  Google Scholar 

  • Matter SF, Roland J (2010) Local extinction synchronizes population dynamics in spatial networks. Proc R Soc B 277(1682):729–737

    Article  PubMed  Google Scholar 

  • Matthies D, Brauer I, Maibom W, Tscharntke T (2004) Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 105:481–488

    Article  Google Scholar 

  • May RM, Oster GF (1976) Bifurcations and dynamic complexity in simple ecological models. Am Nat 110(974):573–599

    Article  Google Scholar 

  • Moilanen A (1999) Patch occupancy models of metapopulation dynamics: efficient parameter estimation using implicit statistical inference. Ecology 80(3):1031–1043

    Article  Google Scholar 

  • Moilanen A (2004) SPOMSIM: software for stochastic patch occupancy models of metapopulation dynamics. Ecol Model 179(4):533–550

    Article  Google Scholar 

  • Molofsky J, Ferdy JB (2005) Extinction dynamics in experimental metapopulations. PNAS 102(10):3726–3731

    Article  PubMed  CAS  Google Scholar 

  • Moran PAP (1953) Noise colour and the risk of population extinctions. Aust J Zool 1:291–298

    Article  Google Scholar 

  • Motro U (1982) Optimal rates of dispersal II. diploid populations. Theor Popul Biol 21(3):412–429

    Article  Google Scholar 

  • Motro U (1983) Optimal rates of dispersal. III. parent-offspring conflict. Theor Popul Biol 23(2):159–168

    Article  Google Scholar 

  • Murray JD (1993) Mathematical Biology. Springer

  • Nicholson AJ, Bailey VA (1935) The balance of animal populations. Proc Zool Soc Lond 3:551–598

    Google Scholar 

  • Ovaskainen O, Meerson B (2010) Stochastic models of population extinction. Trends Ecol Evol 25(11):643–652

    Article  PubMed  Google Scholar 

  • Pimm SL (1998) The forest fragment classic. Nature 393(6680):23–24

    Article  CAS  Google Scholar 

  • Ranta E, Kaitala V (2006) Comment on “stability via asynchrony in drosophila metapopulations with low migration rates”. Science 314:420

    Article  PubMed  CAS  Google Scholar 

  • Ranta E, Kaitala V, Lindstrom J, Linden H (1995) Synchrony in population dynamics. Proc R Soc Lon, B Biol Sci 262(1364):113–118. doi:10.1098/rspb.1995.0184

    Article  Google Scholar 

  • Ranta E, Lundberg P, Kaitala V (2006) Ecology of populations. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Reichenbach T, Mobilia M, Frey E (2007) Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature 448:1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Ricker WE (1954) Stock and recruitment. J Fish Res Bd Can 11:559–623

    Article  Google Scholar 

  • Ricklefs RE, Miller GL (2000) Ecology. Freeman and Co

  • Ripa J, Lundberg P (1996) Noise colour and the risk of population extinctions. Proceedings of the Royal Society B 1377:1751–1753

    Article  Google Scholar 

  • Rosenzweig M, MacArthur R (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97:209–223

    Article  Google Scholar 

  • Seri E, Shnerb N (2010) Sustainability without coexistence state in durrett-levin hawk-dove model. Theor Ecol. doi:10.1007/s12080-010-0099-4

    Google Scholar 

  • Snyder R, Nisbet R (2000) Spatial structure and fluctuations in the contact process and related models. Bull Math Biol 62:959

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe OL, Thomas CD, Yates TJ, Greatorex-Davies JN (1997) Correlated extinctions, colonizations and population fluctuations in a highly connected ringlet butterfly metapopulation. Oecologia 109:235

    Article  Google Scholar 

  • Taylor PD (1988) An inclusive fitness model for dispersal of offspring. J Theor Biol 130(3):363–378

    Article  Google Scholar 

  • Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ, Brinkerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals, and their interactions in fragmented landscapes. Proc Natl Acad Sci U S A 99(20):12923–12926

    Article  PubMed  CAS  Google Scholar 

  • Thouless DJ, Anderson PW, Palmer RG (1977) Solution of solvable model of a spin glass. Philos Mag 35(3):593–601

    Article  CAS  Google Scholar 

  • Vasseur D, Fox J (2009) Phase-locking and environmental fluctuations generate synchrony in a predator-prey community. Nature 460:1007

    Article  PubMed  CAS  Google Scholar 

  • Volterra V (1931) Lecon sur la Theorie Mathematique de la Lutte pour le via. Gauthier-Villars

  • Yaari G, Solomon S, Schiffer M, Shnerb NM (2008) Local enrichment and its nonlocal consequences for victim-exploiter metapopulations. Phys D 237(20):2553–2562

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gur Yaari for helpful discussions. This work was supported by the Israeli Ministry of science TASHTIOT program and by the Israeli Science Foundation BIKURA grant no. 1026/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yossi Ben-Zion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Zion, Y., Fried, Y. & Shnerb, N.M. Migration, coherence and persistence in a fragmented landscape. Theor Ecol 5, 481–493 (2012). https://doi.org/10.1007/s12080-011-0140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-011-0140-2

Keywords

Navigation