Skip to main content
Log in

Human genetics of diabetic vascular complications

  • REVIEW ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Diabetic vascular complications (DVC) affecting several important organ systems of human body such as the cardiovascular system constitute a major public health problem. There is evidence demonstrating that genetic factors contribute to the risk of DVC genetic variants, structural variants, and epigenetic changes play important roles in the development of DVC. Genetic linkage studies have uncovered a number of genetic loci that may shape the risk of DVC. Genetic association studies have identified many common genetic variants for susceptibility to DVC. Structural variants such as copy number variation and interactions of gene × environment have also been detected by association analysis. Apart from the nuclear genome, mitochondrial DNA plays a critical role in regulation of development of DVC. Epigenetic studies have indicated epigenetic changes in chromatin affecting gene transcription in response to environmental stimuli, which provided a large body of evidence of regulating development of diabetes mellitus. Recently, a new window has opened on identifying rare and common genetic loci through next generation sequencing technologies. This review focusses on the current knowledge of the genetic and epigenetic basis of DVC. Ultimately, identification of genes or genetic loci, structural variants and epigenetic changes contributing to risk of or protection from DVC will help uncover the complex mechanism(s) underlying DVC, with crucial implications for the development of personalized medicine for diabetes mellitus and its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abifadel M., Varret M., Rabes J. P., Allard D., Ouguerram K., Devillers M. et al. 2003 Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156.

    Article  CAS  PubMed  Google Scholar 

  • Achilli A., Olivieri A., Pala M., Hooshiar Kashani B., Carossa V., Perego U.A. et al. 2011 Mitochondrial DNA backgrounds might modulate diabetes complications rather than T2DM as a whole. PLoS One 6, e21029.

    Google Scholar 

  • Aliev G., Smith M. A., Obrenovich M. E., De La Torre J. C. and Perry G. 2003 Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Alzheimer disease. Neurotox. Res. 5, 491–504.

    Article  PubMed  Google Scholar 

  • Al-Kateb H., Mirea L., Xie X., Sun L., Liu M., Chen H. et al. 2007 Multiple variants in vascular endothelial growth factor (VEGFA) are risk factors for time to severe retinopathy in type 1 diabetes: the DCCT/EDIC genetics study. Diabetes 56, 2161–2168.

    Google Scholar 

  • Arar N. H., Freedman B. I., Adler S. G., Iyengar S. K., Chew E. Y., Davis M. D. et al. 2008 Heritability of the severity of diabetic retinopathy: the FIND-Eye study. Invest. Ophthalmol. Vis. Sci. 49, 3839–3845.

    Google Scholar 

  • Ashburner B. P., Westerheide S. D. and Baldwin Jr A. S. 2001 The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell Biol. 21, 7065–7077.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aubo C., Senti M., Marrugat J., Tomas M., Vila J., Sala J. et al. 2000 Risk of myocardial infarction associated with Gln/Arg 192 polymorphism in the human paraoxonase gene and diabetes mellitus. The REGICOR investigators. Eur. Heart J. 21, 33–38.

    Google Scholar 

  • Awata T., Inoue K., Kurihara S., Ohkubo T., Watanabe M., Inukai K. et al. 2002 A common polymorphism in the 5-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes 51, 1635–1639.

    Google Scholar 

  • Awata T., Kurihara S., Takata N., Neda T., Iizuka H., Ohkubo T. et al. 2005 Functional VEGF C-634G polymorphism is associated with development of diabetic macular edema and correlated with macular retinal thickness in type 2 diabetes. Biochem. Biophys. Res. Commun. 333, 679–685.

    Google Scholar 

  • Ballinger S.W., Shoffner J..M., Hedaya E. V., Trounce I., Polak M. A., Koontz D. A. et al. 1992 Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion. Nat. Genet. 1, 11–15.

    Article  CAS  PubMed  Google Scholar 

  • Barakat K. and Hitman G. A. 2001 Genetic susceptibility to macrovascular complications of type 2 diabetes mellitus. Best Pract. Res. Clin. Endocrinol. Metab. 15, 359–370.

    Article  CAS  PubMed  Google Scholar 

  • Barski A., Jothi R., Cuddapah S., Cui K., Roh T. Y., Schones D. E. et al. 2009 Chromatin poises miRNA- and protein-coding genes for expression. Genome Res. 19, 1742–1751.

    Article  CAS  PubMed  Google Scholar 

  • Bartel D. P. 2009 MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell C. G., Teschendorff A. E., Rakyan V. K., Maxwell A. P., Beck S. and Savage D. A. 2010 Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med. Genomics 3, 33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bieliauskas A. V. and Pflum M. K. 2008 Isoform-selective histone deacetylase inhibitors. Chem. Soc. Rev. 37, 1402–1413.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowden D. W. 2002 Genetics of diabetes complications. Curr. Diabetes Rep. 2, 191–200.

    Article  Google Scholar 

  • Bowden D. W., Colicigno C. J., Langefeld C. D., Sale M. M., Williams A., Anderson P. J. et al. 2004 A genome scan for diabetic nephropathy in African Americans. Kidney Int. 66, 1517–1526.

    Article  CAS  PubMed  Google Scholar 

  • Brasacchio D., Okabe J., Tikellis C., Balcerczyk A., George P., Baker E. K. et al. 2009 Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58, 1229–1236.

    Article  CAS  PubMed  Google Scholar 

  • Broadbent H. M., Peden J. F., Lorkowski S., Goel A., Ongen H., Green F. et al. 2008 Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum. Mol. Genet. 17, 806–814.

    Article  CAS  PubMed  Google Scholar 

  • Brookes A. J. 1999 The essence of SNPs. Gene 234, 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Browning B. L. and Browning S. R. 2007 Efficient multilocus association testing for whole genome association studies using localized haplotype clustering. Genet. Epidemiol. 31, 365–375.

    Article  PubMed  Google Scholar 

  • Brownlee M. 2001 Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820.

    Article  CAS  PubMed  Google Scholar 

  • Buchbinder S., Rudofsky Jr G., Humpert P. M., Schilling T., Zorn M., Bierhaus A. et al. 2008 The DG10S478 variant in the TCF7L2 gene is not associated with microvascular complications in type 2 diabetes. Exp. Clin. Endocrinol. Diabetes 116, 211–214.

    Article  CAS  PubMed  Google Scholar 

  • Buraczynska M., Ksiazek P., Baranowicz-Gaszczyk I. and Jozwiak L. 2007 Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetes patients. Nephrol. Dial. Transplant 22, 827–832.

    Article  CAS  PubMed  Google Scholar 

  • Canani L. H., Ng D. P., Smiles A., Rogus J. J., Warram J. H. and Krolewski A. S. 2002 Polymorphism in ecto-nucleotide pyrophosphatase/phosphodiesterase 1 gene (ENPP1/PC-1) and early development of advanced diabetic nephropathy in type 1 diabetes. Diabetes 51, 1188–1193.

    Article  CAS  PubMed  Google Scholar 

  • Canani L. H., Capp C., Ng D. P., Choo S. G., Maia A. L., Nabinger G. B. et al. 2005a The fatty acid-binding protein-2 A54T polymorphism is associated with renal disease in patients with type 2 diabetes. Diabetes 54, 3326–3330.

  • Canani L. H., Costa L. A., Crispim D., Goncalves Dos Santos K., Roisenberg I., Lisboa H. R. et al. 2005b The presence of allele D of angiotensin-converting enzyme polymorphism is associated with diabetic nephropathy in patients with less than 10 years duration of Type 2 diabetes. Diabetes Med. 22, 1167–1172.

  • Care A., Catalucci D., Felicetti F., Bonci D., Addario A., Gallo P. et al. 2007 MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618.

    Google Scholar 

  • Carter A. M., Mansfield M. W., Stickland M. H. and Grant P. J. 1996 Beta-fibrinogen gene-455 G/A polymorphism and fibrinogen levels. Risk factors for coronary artery disease in subjects with NIDDM. Diabetes Care 19, 1265–1268.

    Article  CAS  PubMed  Google Scholar 

  • Cauchi S. and Froguel P. 2008 TCF7L2 genetic defect and type 2 diabetes. Curr. Diabetes Rep. 8, 149–155.

    Article  CAS  Google Scholar 

  • Cauchi S., Meyre D., Durand E., Proenca C., Marre M., Hadjadj S. et al. 2008 Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS One 3, e2031.

    Article  CAS  Google Scholar 

  • Ceriello A., Ihnat M. A. and Thorpe J. E. 2009 Clinical review 2: The “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications? J. Clin. Endocrinol. Metab. 94, 410–415.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti S. K., Francis J., Ziesmann S. M., Garmey J. C. and Mirmira R. G. 2003 Covalent histone modifications underlie the developmental regulation of insulin gene transcription in pancreatic beta cells. J. Biol. Chem. 278, 23617–23623.

    Article  CAS  PubMed  Google Scholar 

  • Chapman J. and Clayton D. 2007 Detecting association using epistatic information. Genet. Epidemiol. 31, 894–909.

    Article  PubMed  Google Scholar 

  • Chen S., Feng B., George B., Chakrabarti R., Chen M. and Chakrabarti S. 2010 Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am. J. Physiol. Endocrinol. Metab. 298, E127–E137.

    Article  CAS  Google Scholar 

  • Chen X., Wang K., Chen J., Guo J., Yin Y., Cai X. et al. 2009 In vitro evidence suggests that miR-133a-mediated regulation of uncoupling protein 2 (UCP2) is an indispensable step in myogenic differentiation. J. Biol. Chem. 284, 5362–5369.

    Article  CAS  PubMed  Google Scholar 

  • Cheng L. C., Pastrana E., Tavazoie M. and Doetsch F. 2009 miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng X., Shi L., Nie S., Wang F., Li X., Xu C. et al. 2011 The same chromosome 9p21.3 locus is associated with type 2 diabetes and coronary artery disease in a Chinese Han population. Diabetes 60, 680–684.

    Article  CAS  PubMed  Google Scholar 

  • Churchill A. J., Carter J. G., Ramsden C., Turner S. J., Yeung A., Brenchley P. E. et al. 2008 VEGF polymorphisms are associated with severity of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 49, 3611–3616.

    Article  PubMed  Google Scholar 

  • Cook Jr E. H. and Scherer S. W. 2008 Copy-number variations associated with neuropsychiatric conditions. Nature 455, 919–923.

    Article  CAS  PubMed  Google Scholar 

  • Davies J. L., Kawaguchi Y., Bennett S. T., Copeman J. B., Cordell H. J., Pritchard L. E. et al. 1994 A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371, 130–136.

    Google Scholar 

  • Doria A., Wojcik J., Xu R., Gervino E. V., Hauser T. H., Johnstone M. T. et al. 2008 Interaction between poor glycemic control and 9p21 locus on risk of coronary artery disease in type 2 diabetes. J. Am. Med. Assoc. 300, 2389–2397.

    Google Scholar 

  • Durlach A., Clavel C., Girard-Globa A. and Durlach V. 1999 Sex-dependent association of a genetic polymorphism of cholesteryl ester transfer protein with high-density lipoprotein cholesterol and macrovascular pathology in type II diabetic patients. J. Clin. Endocrinol. Metab. 84, 3656–3659.

    CAS  PubMed  Google Scholar 

  • Elbein S. C. and Hasstedt S. J. 2002 Quantitative trait linkage analysis of lipid-related traits in familial type 2 diabetes: evidence for linkage of triglyceride levels to chromosome 19q. Diabetes 51, 528–535.

    Article  CAS  PubMed  Google Scholar 

  • El-Osta A., Brasacchio D., Yao D., Pocai A., Jones P. L., Roeder R. G. et al. 2008 Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med. 205, 2409–2417.

    Google Scholar 

  • Erdmann J., Grosshennig A., Braund P. S., Konig I. R., Hengstenberg C., Hall A. S. et al. 2009 New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat. Genet. 41, 280–282.

    Article  CAS  Google Scholar 

  • Esau C., Davis S., Murray S. F., Yu X. X., Pandey S. K., Pear M. et al. 2006 miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98.

    Article  CAS  PubMed  Google Scholar 

  • Feng B., Chen S., Chiu J., George B. and Chakrabarti S. 2008 Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am. J. Physiol. Endocrinol. Metab. 294, E1119–E1126.

    Article  CAS  Google Scholar 

  • Feng B., Chen S., George B., Feng Q. and Chakrabarti S. 2010 miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab. Res. Rev. 26, 40–49.

    Article  CAS  PubMed  Google Scholar 

  • Fichtlscherer S., De Rosa S., Fox H., Schwietz T., Fischer A., Liebetrau C. et al. 2010 Circulating microRNAs in patients with coronary artery disease. Circ. Res. 107, 677–684.

    Article  CAS  PubMed  Google Scholar 

  • Fogarty D. G., Rich S. S., Hanna L., Warram J. H. and Krolewski A. S. 2000 Urinary albumin excretion in families with type 2 diabetes is heritable and genetically correlated to blood pressure. Kidney Int. 57, 250–257.

    Article  CAS  PubMed  Google Scholar 

  • Frayling T. M. 2007 Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nat. Rev. Genet. 8, 657–662.

    Article  CAS  PubMed  Google Scholar 

  • Freeman J. L., Perry G. H., Feuk L., Redon R., Mccarroll S. A., Altshuler D. M. et al. 2006 Copy number variation: new insights in genome diversity. Genome Res. 16, 949–961.

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa T., Ikegami H., Kawaguchi Y., Yamato E., Nakagawa Y., Shen G. Q. et al. 1999 Length rather than a specific allele of dinucleotide repeat in the 5 upstream region of the aldose reductase gene is associated with diabetic retinopathy. Diabetes Med. 16, 1044–1047.

    Google Scholar 

  • Gaikwad A. B., Sayyed S. G., Lichtnekert J., Tikoo K. and Anders H. J. 2010 Renal failure increases cardiac histone h3 acetylation, dimethylation, and phosphorylation and the induction of cardiomyopathy-related genes in type 2 diabetes. Am. J. Pathol. 176, 1079–1083.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher I. J., Scheele C., Keller P., Nielsen A. R., Remenyi J., Fischer C. P. et al. 2010 Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in type 2 diabetes. Genome Med. 2, 9.

    Google Scholar 

  • Gerritsen M. E., Williams A. J., Neish A. S., Moore S., Shi Y. and Collins T. 1997 CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA 94, 2927–2932.

    Article  CAS  PubMed  Google Scholar 

  • Glazier A. M., Nadeau J. H. and Aitman T. J. 2002 Finding genes that underlie complex traits. Science 298, 2345–2349.

    Article  CAS  PubMed  Google Scholar 

  • Goldin A., Beckman J. A., Schmidt A. M. and Creager M. A. 2006 Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114, 597–605.

    Article  CAS  PubMed  Google Scholar 

  • Granger A., Abdullah I., Huebner F., Stout A., Wang T., Huebner T. et al. 2008 Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 22, 3549–3560.

    Article  CAS  PubMed  Google Scholar 

  • Granjon A., Gustin M. P., Rieusset J., Lefai E., Meugnier E., Guller I. et al. 2009 The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 58, 2555–2564.

    Google Scholar 

  • Gray S. G. and De Meyts P. 2005 Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab. Res. Rev. 21, 416–433.

    Article  CAS  PubMed  Google Scholar 

  • Grayson B. L., Smith M. E., Thomas J. W., Wang L., Dexheimer P., Jeffrey J. et al. 2010 Genome-wide analysis of copy number variation in type 1 diabetes. PLoS One 5, e15393.

    Google Scholar 

  • Greenberg D. A. 1993 Linkage analysis of “necessary” disease loci versus “susceptibility” loci. Am. J. Hum. Genet. 52, 135–143.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg D. A. and Abreu P. C. 2001 Determining trait locus position from multipoint analysis: accuracy and power of three different statistics. Genet. Epidemiol. 21, 299–314.

    Article  CAS  PubMed  Google Scholar 

  • Groop L., Ekstrand A., Forsblom C., Widen E., Groop P. H., Teppo A. M. et al. 1993 Insulin resistance, hypertension and microalbuminuria in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 36, 642–647.

    Google Scholar 

  • Hagiwara M., Yamagata K., Capaldi R. A. and Koyama A. 2006 Mitochondrial dysfunction in focal segmental glomerulosclerosis of puromycin aminonucleoside nephrosis. Kidney Int. 69, 1146–1152.

    Article  CAS  PubMed  Google Scholar 

  • Hahn L. W., Ritchie M. D. and Moore J. H. 2003 Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19, 376–382.

    Article  CAS  PubMed  Google Scholar 

  • Hallman D. M., Boerwinkle E., Gonzalez V. H., Klein B. E., Klein R. and Hanis C. L. 2007 A genome-wide linkage scan for diabetic retinopathy susceptibility genes in Mexican Americans with type 2 diabetes from Starr County, Texas. Diabetes 56, 1167–1173.

    Article  CAS  PubMed  Google Scholar 

  • Han J., Colditz G. A., Liu J. S. and Hunter D. J. 2005 Genetic variation in XPD, sun exposure, and risk of skin cancer. Cancer Epidemiol. Biomarkers Prev. 14, 1539–1544.

    Article  CAS  PubMed  Google Scholar 

  • Haumaitre C., Lenoir O. and Scharfmann R. 2008 Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol. Cell Biol. 28, 6373–6383.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helgadottir A., Thorleifsson G., Manolescu A., Gretarsdottir S., Blondal T., Jonasdottir A. et al. 2007 A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493.

    Google Scholar 

  • Heneghan H. M., Miller N. and Kerin M. J. 2010 Role of microRNAs in obesity and the metabolic syndrome. Obes. Rev. 11, 354–361.

    Article  CAS  PubMed  Google Scholar 

  • Herrmann S. M., Ringel J., Wang J. G., Staessen J. A. and Brand E. 2002 Peroxisome proliferator-activated receptor-gamma2 polymorphism Pro12Ala is associated with nephropathy in type 2 diabetes: the Berlin Diabetes Mellitus (BeDiaM) study. Diabetes 51, 2653–2657.

    Article  CAS  PubMed  Google Scholar 

  • Hietala K., Forsblom C., Summanen P. and Groop P. H. 2008 Heritability of proliferative diabetic retinopathy. Diabetes 57, 2176–2180.

    Article  CAS  PubMed  Google Scholar 

  • Hodge S. E. 1994 What association analysis can and cannot tell us about the genetics of complex disease? Am. J. Med. Genet. 54, 318–323.

    Article  CAS  PubMed  Google Scholar 

  • Hodge S. E., Anderson C. E., Neiswanger K., Sparkes R. S. and Rimoin D. L. 1983 The search for heterogeneity in insulin-dependent diabetes mellitus (IDDM): linkage studies, two-locus models, and genetic heterogeneity. Am. J. Hum. Genet. 35, 1139–1155.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoerger T. J., Segel J. E., Gregg E. W. and Saaddine J. B. 2008 Is glycemic control improving in U.S. adults? Diabetes Care 31, 81–86.

    Article  PubMed  Google Scholar 

  • Hoover K. B. and Bryant P. J. 2000 The genetics of the protein 4.1 family: organizers of the membrane and cytoskeleton. Curr. Opin. Cell Biol. 12, 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Hudson B. I., Stickland M. H., Futers T. S. and Grant P. J. 2001 Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes 50, 1505–1511.

    Article  CAS  PubMed  Google Scholar 

  • Hunter D. J. 2005 Gene-environment interactions in human diseases. Nat. Rev. Genet. 6, 287–298.

    Article  CAS  PubMed  Google Scholar 

  • Hunter D. J. and Kraft P. 2007 Drinking from the fire hose–statistical issues in genomewide association studies. N. Engl. J. Med. 357, 436–439.

    Article  CAS  PubMed  Google Scholar 

  • Iacoviello L., Burzotta F., Di Castelnuovo A., Zito F., Marchioli R. and Donati M. B. 1998 The 4G/5G polymorphism of PAI-1 promoter gene and the risk of myocardial infarction: a meta-analysis. Thromb. Haemost. 80, 1029–1030.

    CAS  PubMed  Google Scholar 

  • Iacoviello L. and Donati M. B. 1998 Blood coagulation factor VII activity and the risk of myocardial infarction: the novel identification of a genetic protection that can be mimicked by an old drug. G. Ital. Cardiol. 28, 718–721.

    CAS  PubMed  Google Scholar 

  • Iafrate A. J., Feuk L., Rivera M. N., Listewnik M. L., Donahoe P. K., Qi Y. et al. 2004 Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951.

    Google Scholar 

  • Ichikawa F., Yamada K., Ishiyama-Shigemoto S., Yuan X. and Nonaka K. 1999 Association of an (A-C)n dinucleotide repeat polymorphic marker at the 5-region of the aldose reductase gene with retinopathy but not with nephropathy or neuropathy in Japanese patients with Type 2 diabetes mellitus. Diabetes Med. 16, 744–748.

    Article  CAS  Google Scholar 

  • Ikegishi Y., Tawata M., Aida K. and Onaya T. 1999 Z-4 allele upstream of the aldose reductase gene is associated with proliferative retinopathy in Japanese patients with NIDDM, and elevated luciferase gene transcription in vitro. Life Sci. 65, 2061–2070.

    Article  CAS  PubMed  Google Scholar 

  • Imperatore G., Hanson R. L., Pettitt D. J., Kobes S., Bennett P. H. and Knowler W. C. 1998 Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group. Diabetes 47, 821–830.

    Article  CAS  PubMed  Google Scholar 

  • Ito K., Hanazawa T., Tomita K., Barnes P. J. and Adcock I. M. 2004 Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochem. Biophys. Res. Commun. 315, 240–245.

    Article  CAS  PubMed  Google Scholar 

  • Iyengar S. K., Abboud H. E., Goddard K. A., Saad M. F., Adler S. G., Arar N. H. et al. 2007 Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the family investigation of nephropathy and diabetes (FIND). Diabetes 56, 1577–1585.

    Google Scholar 

  • James R. W., Leviev I., Ruiz J., Passa P., Froguel P. and Garin M. C. 2000 Promoter polymorphism T(-107)C of the paraoxonase PON1 gene is a risk factor for coronary heart disease in type 2 diabetic patients. Diabetes 49, 1390–1393.

    Article  CAS  PubMed  Google Scholar 

  • Jarinova O., Stewart A. F., Roberts R., Wells G., Lau P., Naing T. et al. 2009 Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler. Thromb. Vasc. Biol. 29, 1671–1677.

    Google Scholar 

  • Jones C. A., Krolewski A. S., Rogus J., Xue J. L., Collins A. and Warram J. H. 2005 Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int. 67, 1684–1691.

    Google Scholar 

  • Kamb A., Gruis N. A., Weaver-Feldhaus J., Liu Q., Harshman K., Tavtigian S. V. et al. 1994 A cell cycle regulator potentially involved in genesis of many tumor types. Science 264, 436–440.

    Article  CAS  PubMed  Google Scholar 

  • Kaprio J., Tuomilehto J., Koskenvuo M., Romanov K., Reunanen A., Eriksson J. et al. 1992 Concordance for type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus in a population-based cohort of twins in Finland. Diabetologia 35, 1060–1067.

    Google Scholar 

  • Kathiresan S., Voight B. F., Purcell S., Musunuru K., Ardissino D., Mannucci P. M. et al. 2009 Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat. Genet. 41, 334–341.

    Google Scholar 

  • Kato M., Zhang J., Wang M., Lanting L., Yuan H., Rossi J. J. et al. 2007 MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. USA 104, 3432–3437.

    Google Scholar 

  • Kato M., Arce L. and Natarajan R. 2009a MicroRNAs and their role in progressive kidney diseases. Clin. J. Am. Soc. Nephrol. 4, 1255–1266.

    Article  CAS  PubMed  Google Scholar 

  • Kato M., Putta S., Wang M., Yuan H., Lanting L., Nair I. et al. 2009b TGF-beta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11, 881–889.

  • Kaur H., Chen S., Xin X., Chiu J., Khan Z. A. and Chakrabarti S. 2006 Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes 55, 3104–3111.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki I., Tahara H., Emoto M., Shoji T. and Nishizawa Y. 2002 Relationship between TaqIB cholesteryl ester transfer protein gene polymorphism and macrovascular complications in Japanese patients with type 2 diabetes. Diabetes 51, 871–874.

    Article  CAS  PubMed  Google Scholar 

  • Kim V. N., Han J. and Siomi M. C. 2009 Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139.

    Article  CAS  PubMed  Google Scholar 

  • Kimura H., Gejyo F., Suzuki Y., Suzuki S., Miyazaki R. and Arakawa M. 1998 Polymorphisms of angiotensin converting enzyme and plasminogen activator inhibitor-1 genes in diabetes and macroangiopathy1. Kidney Int. 54, 1659–1669.

    Article  CAS  PubMed  Google Scholar 

  • Kleeberger S. R. and Peden D. 2005 Gene-environment interactions in asthma and other respiratory diseases. Annu. Rev. Med. 56, 383–400.

    Article  CAS  PubMed  Google Scholar 

  • Ko B. C., Lam K. S., Wat N. M. and Chung S. S. 1995 An (A-C)n dinucleotide repeat polymorphic marker at the 5 end of the aldose reductase gene is associated with early-onset diabetic retinopathy in NIDDM patients. Diabetes 44, 727–732.

    Article  CAS  PubMed  Google Scholar 

  • Krolewski A. S., Poznik G. D., Placha G., Canani L., Dunn J., Walker W. et al. 2006 A genome-wide linkage scan for genes controlling variation in urinary albumin excretion in type II diabetes. Kidney Int. 69, 129–136.

    Article  CAS  PubMed  Google Scholar 

  • Kumaramanickavel G., Ramprasad V. L., Sripriya S., Upadyay N. K., Paul P. G. and Sharma T. 2002 Association of Gly82Ser polymorphism in the RAGE gene with diabetic retinopathy in type II diabetic Asian Indian patients. J. Diabetes Complications 16, 391–394.

    Article  PubMed  Google Scholar 

  • Kumaramanickavel G., Sripriya S., Ramprasad V. L., Upadyay N. K., Paul P. G. and Sharma T. 2003 Z-2 aldose reductase allele and diabetic retinopathy in India. Ophthalmic Genet. 24, 41–48.

    Article  PubMed  Google Scholar 

  • Kuroda A., Rauch T. A., Todorov I., Ku H. T., Al-Abdullah I. H., Kandeel F. et al. 2009 Insulin gene expression is regulated by DNA methylation. PLoS One 4, e6953.

    Google Scholar 

  • Kurokawa R., Rosenfeld M. G. and Glass C. K. 2009 Transcriptional regulation through noncoding RNAs and epigenetic modifications. RNA Biol. 6, 233–236.

    Article  CAS  PubMed  Google Scholar 

  • Laan M. and Paabo S. 1998 Mapping genes by drift-generated linkage disequilibrium. Am. J. Hum. Genet. 63, 654–656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lam K. S., Ma O. C., Wat N. M., Chan L. C. and Janus E. D. 1999 Beta-fibrinogen gene G/A-455 polymorphism in relation to fibrinogen concentrations and ischaemic heart disease in Chinese patients with type II diabetes. Diabetologia 42, 1250–1253.

    Article  CAS  PubMed  Google Scholar 

  • Lange L. A., Bowden D. W., Langefeld C. D., Wagenknecht L. E., Carr J. J., Rich S. S. et al. 2002 Heritability of carotid artery intima-medial thickness in type 2 diabetes. Stroke 33, 1876–1881.

    Google Scholar 

  • Le Marchand L. and Wilkens L. R. 2008 Design considerations for genomic association studies: importance of gene-environment interactions. Cancer Epidemiol. Biomarkers Prev. 17, 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Lee S. C., Wang Y., Ko G. T., Critchley J. A., Ng M. C., Tong P. C. et al. 2001 Association of retinopathy with a microsatellite at 5 end of the aldose reductase gene in Chinese patients with late-onset Type 2 diabetes. Ophthalmic Genet. 22, 63–67.

    Article  CAS  PubMed  Google Scholar 

  • Leviev I., Negro F. and James R. W. 1997 Two alleles of the human paraoxonase gene produce different amounts of mRNA. An explanation for differences in serum concentrations of paraoxonase associated with the (Leu-Met54) polymorphism. Arterioscler. Thromb. Vasc. Biol. 17, 2935–2939.

    Article  CAS  PubMed  Google Scholar 

  • Li S., Chen X., Zhang H., Liang X., Xiang Y., Yu C. et al. 2009 Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J. Lipid Res. 50, 1756–1765.

    Google Scholar 

  • Li Y., Reddy M. A., Miao F., Shanmugam N., Yee J. K., Hawkins D. et al. 2008 Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J. Biol. Chem. 283, 26771–26781.

    Google Scholar 

  • Liang F., Kume S. and Koya D. 2009 SIRT1 and insulin resistance. Nat. Rev. Endocrinol. 5, 367–373.

    Article  CAS  PubMed  Google Scholar 

  • Lieberfarb M. E., Lin M., Lechpammer M., Li C., Tanenbaum D. M., Febbo P. G. et al. 2003 Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. Cancer Res. 63, 4781–4785.

    Google Scholar 

  • Lindholm E., Bakhtadze E., Sjogren M., Cilio C. M., Agardh E., Groop L. et al. 2006 The -374 T/A polymorphism in the gene encoding RAGE is associated with diabetic nephropathy and retinopathy in type 1 diabetic patients. Diabetologia 49, 2745–2755.

    Google Scholar 

  • Ling C., Del Guerra S., Lupi R., Ronn T., Granhall C., Luthman H. et al. 2008 Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51, 615–622.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu N., Williams A. H., Kim Y., Mcanally J., Bezprozvannaya S., Sutherland L. B. et al. 2007 An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc. Natl. Acad. Sci. USA 104, 20844–20849.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z. H., Guan T. J., Chen Z. H. and Li L. S. 1999 Glucose transporter (GLUT1) allele (XbaI-) associated with nephropathy in non-insulin-dependent diabetes mellitus. Kidney Int. 55, 1843–1848.

    Article  CAS  PubMed  Google Scholar 

  • Looker H. C., Nelson R. G., Chew E., Klein R., Klein B. E., Knowler W. C. et al. 2007 Genome-wide linkage analyses to identify loci for diabetic retinopathy. Diabetes 56, 1160–1166.

    Google Scholar 

  • Lowell B. B. and Shulman G. I. 2005 Mitochondrial dysfunction and type 2 diabetes. Science 307, 384–387.

    Article  CAS  PubMed  Google Scholar 

  • Maeda M., Yamamoto I., Fukuda M., Nishida M., Fujitsu J., Nonen S. et al. 2003 MTHFR gene polymorphism as a risk factor for diabetic retinopathy in type 2 diabetic patients without serum creatinine elevation. Diabetes Care 26, 547–548.

    Article  PubMed  Google Scholar 

  • Maeda S., Araki S., Babazono T., Toyoda M., Umezono T., Kawai K. et al. 2010 Replication study for the association between four loci identified by a genome-wide association study on European American subjects with type 1 diabetes and susceptibility to diabetic nephropathy in Japanese subjects with type 2 diabetes. Diabetes 59, 2075–2079.

    Google Scholar 

  • Malecki M. T., Cyganek K., Mirkiewicz-Sieradzka B., Wolkow P. P., Wanic K., Skupien J. et al. 2008 Alanine variant of the Pro12Ala polymorphism of the PPARgamma gene might be associated with decreased risk of diabetic retinopathy in type 2 diabetes. Diabetes Res. Clin. Pract. 80, 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Malhotra A. and Wolford J. K. 2005 Analysis of quantitative lipid traits in the genetics of NIDDM (GENNID) study. Diabetes 54, 3007–3014.

    Article  CAS  PubMed  Google Scholar 

  • Mansfield M. W., Stickland M. H. and Grant P. J. 1995 Plasminogen activator inhibitor-1 (PAI-1) promoter polymorphism and coronary artery disease in non-insulin-dependent diabetes. Thromb. Haemost. 74, 1032–1034.

    CAS  PubMed  Google Scholar 

  • Matsumoto A., Iwashima Y., Abiko A., Morikawa A., Sekiguchi M., Eto M. et al. 2000 Detection of the association between a deletion polymorphism in the gene encoding angiotensin I-converting enzyme and advanced diabetic retinopathy. Diabetes Res. Clin. Pract. 50, 195–202.

    Article  CAS  PubMed  Google Scholar 

  • Mcpherson R., Pertsemlidis A., Kavaslar N., Stewart A., Roberts R., Cox D. R. et al. 2007 A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medici F., Hawa M., Ianari A., Pyke D. A. and Leslie R. D. 1999 Concordance rate for type II diabetes mellitus in monozygotic twins: actuarial analysis. Diabetologia 42, 146–150.

    Article  CAS  PubMed  Google Scholar 

  • Meguro S., Takei I., Murata M., Hirose H., Takei N., Mitsuyoshi Y. et al. 2001 Cholesteryl ester transfer protein polymorphism associated with macroangiopathy in Japanese patients with type 2 diabetes. Atherosclerosis 156, 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Meigs J. B., Shrader P., Sullivan L. M., Mcateer J. B., Fox C. S., Dupuis J. et al. 2008 Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med. 359, 2208–2219.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Melzer D., Murray A., Hurst A. J., Weedon M. N., Bandinelli S., Corsi A. M. et al. 2006 Effects of the diabetes linked TCF7L2 polymorphism in a representative older population. BMC Med. 4, 34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miao F., Gonzalo I. G., Lanting L. and Natarajan R. 2004 In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem. 279, 18091–18097.

    Article  CAS  PubMed  Google Scholar 

  • Miao F., Wu X., Zhang L., Yuan Y. C., Riggs A. D. and Natarajan R. 2007 Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J. Biol. Chem. 282, 13854–13863.

    Article  CAS  PubMed  Google Scholar 

  • Miao F., Smith D. D., Zhang L., Min A., Feng W. and Natarajan R. 2008a Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57, 3189–3198.

    Article  CAS  PubMed  Google Scholar 

  • Miao F., Wu X., Zhang L., Riggs A. D. and Natarajan R. 2008b Histone methylation patterns are cell-type specific in human monocytes and lymphocytes and well maintained at core genes. J. Immunol. 180, 2264–2269.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moczulski D. K., Rogus J. J., Antonellis A., Warram J. H. and Krolewski A. S. 1998 Major susceptibility locus for nephropathy in type 1 diabetes on chromosome 3q: results of novel discordant sib-pair analysis. Diabetes 47, 1164–1169.

    Article  CAS  PubMed  Google Scholar 

  • Moore J. H., Gilbert J. C., Tsai C. T., Chiang F. T., Holden T., Barney N. et al. 2006 A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theor. Biol. 241, 252–261.

    Article  PubMed  Google Scholar 

  • Muhonen P. and Holthofer H. 2009 Epigenetic and microRNA-mediated regulation in diabetes. Nephrol. Dial. Transplant 24, 1088–1096.

    Article  CAS  PubMed  Google Scholar 

  • Mutskov V., Raaka B. M., Felsenfeld G. and Gershengorn M. C. 2007 The human insulin gene displays transcriptionally active epigenetic marks in islet-derived mesenchymal precursor cells in the absence of insulin expression. Stem Cells 25, 3223–3233.

    Article  CAS  PubMed  Google Scholar 

  • Nagi D. K., Mccormack L. J., Mohamed-Ali V., Yudkin J. S., Knowler W. C. and Grant P. J. 1997 Diabetic retinopathy, promoter (4G/5G) polymorphism of PAI-1 gene, and PAI-1 activity in Pima Indians with type 2 diabetes. Diabetes Care 20, 1304–1309.

    Article  CAS  PubMed  Google Scholar 

  • Natarajan R., Gonzales N., Xu L. and Nadler J. L. 1992 Vascular smooth muscle cells exhibit increased growth in response to elevated glucose. Biochem. Biophys. Res. Commun. 187, 552–560.

    Article  CAS  PubMed  Google Scholar 

  • Newman B., Selby J. V., King M. C., Slemenda C., Fabsitz R. and Friedman G. D. 1987 Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia 30, 763–768.

    Article  CAS  PubMed  Google Scholar 

  • Ng D. P., Tai B. C., Koh D., Tan K. W. and Chia K. S. 2005 Angiotensin-I converting enzyme insertion/deletion polymorphism and its association with diabetic nephropathy: a meta-analysis of studies reported between 1994 and 2004 and comprising 14,727 subjects. Diabetologia 48, 1008–1016.

    Article  CAS  PubMed  Google Scholar 

  • Ng S. B., Turner E. H., Robertson P. D., Flygare S. D., Bigham A. W., Lee C. et al. 2009 Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461, 272–276.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ng S. B., Buckingham K. J., Lee C., Bigham A. W., Tabor H. K., Dent K. M. et al. 2010 Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. 42, 30–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noh H., Oh E. Y., Seo J. Y., Yu M. R., Kim Y. O., Ha H. et al. 2009 Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-beta1-induced renal injury. Am. J. Physiol. Renal Physiol. 297, F729–F739.

    Google Scholar 

  • Novelli G., Predazzi I. M., Mango R., Romeo F. and Mehta J. L. 2010 Role of genomics in cardiovascular medicine. World J. Cardiol. 2, 428–436.

    Article  PubMed Central  PubMed  Google Scholar 

  • O’rahilly S., Barroso I. and Wareham N. J. 2005 Genetic factors in type 2 diabetes: the end of the beginning? Science 307, 370–373.

    Article  PubMed  CAS  Google Scholar 

  • Odawara M., Tachi Y. and Yamashita K. 1997 Paraoxonase polymorphism (Gln192-Arg) is associated with coronary heart disease in Japanese noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 82, 2257–2260.

    CAS  PubMed  Google Scholar 

  • Ogura Y., Bonen D. K., Inohara N., Nicolae D. L., Chen F. F., Ramos R. et al. 2001 A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411, 603–606.

    Article  CAS  PubMed  Google Scholar 

  • Olmos P., Futers S., Acosta A. M., Siegel S., Maiz A., Schiaffino R. et al. 2000 (AC)23 [Z-2] polymorphism of the aldose reductase gene and fast progression of retinopathy in Chilean type 2 diabetics. Diabetes Res. Clin. Pract. 47, 169–176.

    Article  CAS  PubMed  Google Scholar 

  • Osei-Hyiaman D., Hou L., Mengbai F., Zhiyin R., Zhiming Z. and Kano K. 2001 Coronary artery disease risk in Chinese type 2 diabetics: is there a role for paraxonase 1 gene (Q192R) polymorphism? Eur. J. Endocrinol. 144, 639–644.

    Article  CAS  PubMed  Google Scholar 

  • Park H. K., Ahn C. W., Lee G. T., Kim S. J., Song Y. D., Lim S. K. et al. 2002 (AC)(n) polymorphism of aldose reductase gene and diabetic microvascular complications in type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 55, 151–157.

    Article  CAS  PubMed  Google Scholar 

  • Perassolo M. S., Almeida J. C., Pra R. L., Mello V. D., Maia A. L., Moulin C. C. et al. 2003 Fatty acid composition of serum lipid fractions in type 2 diabetic patients with microalbuminuria. Diabetes Care 26, 613–618.

    Article  CAS  PubMed  Google Scholar 

  • Pezzolesi M. G., Poznik G. D., Mychaleckyj J. C., Paterson A. D., Barati M. T., Klein J. B. et al. 2009 Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes 58, 1403–1410.

    Google Scholar 

  • Pfohl M., Koch M., Enderle M. D., Kuhn R., Fullhase J., Karsch K. R. et al. 1999 Paraoxonase 192 Gln/Arg gene polymorphism, coronary artery disease, and myocardial infarction in type 2 diabetes. Diabetes 48, 623–627.

    Google Scholar 

  • Pizzuti A., Frittitta L., Argiolas A., Baratta R., Goldfine I. D., Bozzali M. et al. 1999 A polymorphism (K121Q) of the human glycoprotein PC-1 gene coding region is strongly associated with insulin resistance. Diabetes 48, 1881–1884.

    Google Scholar 

  • Poy M. N., Eliasson L., Krutzfeldt J., Kuwajima S., Ma X., Macdonald P. E. et al. 2004 A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230.

    Google Scholar 

  • Poy M. N., Spranger M. and Stoffel M. 2007 microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes. Metab. 9(suppl. 2), 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Quinn M., Angelico M. C., Warram J. H. and Krolewski A. S. 1996 Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia 39, 940–945.

    Article  CAS  PubMed  Google Scholar 

  • Ramprasad S., Radha V., Mathias R. A., Majumder P. P., Rao M. R. and Rema M. 2007 Rage gene promoter polymorphisms and diabetic retinopathy in a clinic-based population from South India. Eye (London) 21, 395–401.

    Article  CAS  Google Scholar 

  • Ray D., Mishra M., Ralph S., Read I., Davies R. and Brenchley P. 2004 Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes 53, 861–864.

    Article  CAS  PubMed  Google Scholar 

  • Reddy M. A., Sahar S., Villeneuve L. M., Lanting L. and Natarajan R. 2009 Role of Src tyrosine kinase in the atherogenic effects of the 12/15-lipoxygenase pathway in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 29, 387–393.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Redon R., Ishikawa S., Fitch K. R., Feuk L., Perry G. H., Andrews T. D. et al. 2006 Global variation in copy number in the human genome. Nature 444, 444–454.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rema M., Premkumar S., Anitha B., Deepa R., Pradeepa R. and Mohan V. 2005 Prevalence of diabetic retinopathy in urban India: the Chennai Urban Rural Epidemiology Study (CURES) eye study, I. Invest. Ophthalmol. Vis. Sci. 46, 2328–2333.

    Article  PubMed  Google Scholar 

  • Remmers E. F., Griffiths M. M., Longman R. E., Gulko P. S., Kawahito Y., Chen S. et al. 1999 An integrated rat genetic map: analysis of linkage conservation with the mouse and human maps. Transplant Proc. 31, 1549–1554.

    Google Scholar 

  • Riad A., Zhuo J. L., Schultheiss H. P. and Tschope C. 2007 The role of the renal kallikrein-kinin system in diabetic nephropathy. Curr. Opin. Nephrol. Hypertens. 16, 22–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richeti F., Noronha R. M., Waetge R. T., De Vasconcellos J. P., De Souza O. F., Kneipp B. et al. 2007 Evaluation of AC(n) and C(-106)T polymorphisms of the aldose reductase gene in Brazilian patients with DM1 and susceptibility to diabetic retinopathy. Mol. Vis. 13, 740–745.

    CAS  PubMed  Google Scholar 

  • Risch N. 1990 Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am. J. Hum. Genet. 46, 229–241.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Risch N. and Merikangas K. 1996 The future of genetic studies of complex human diseases. Science 273, 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie M. D., Hahn L. W., Roodi N., Bailey L. R., Dupont W. D., Parl F. F. et al. 2001 Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69, 138–147.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robison Jr W. G., Nagata M., Laver N., Hohman T. C. and Kinoshita J. H. 1989 Diabetic-like retinopathy in rats prevented with an aldose reductase inhibitor. Invest. Ophthalmol. Vis. Sci. 30, 2285–2292.

    PubMed  Google Scholar 

  • Rogus J. J., Poznik G. D., Pezzolesi M. G., Smiles A. M., Dunn J., Walker W. et al. 2008 High-density single nucleotide polymorphism genome-wide linkage scan for susceptibility genes for diabetic nephropathy in type 1 diabetes: discordant sibpair approach. Diabetes 57, 2519–2526.

    Article  CAS  PubMed  Google Scholar 

  • Rosen P., Nawroth P. P., King G., Moller W., Tritschler H. J. and Packer L. 2001 The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab. Res. Rev. 17, 189–212.

    Article  CAS  PubMed  Google Scholar 

  • Rotig A., Bessis J. L., Romero N., Cormier V., Saudubray J. M., Narcy P. et al. 1992 Maternally inherited duplication of the mitochondrial genome in a syndrome of proximal tubulopathy, diabetes mellitus, and cerebellar ataxia. Am. J. Hum. Genet. 50, 364–370.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz J., Blanche H., James R. W., Garin M. C., Vaisse C., Charpentier G. et al. 1995 Gln-Arg192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes. Lancet 346, 869–872.

    Article  CAS  PubMed  Google Scholar 

  • Rutter M., Moffitt T. E. and Caspi A. 2006 Gene-environment interplay and psychopathology: multiple varieties but real effects. J. Child Psychol. Psychiat. 47, 226–261.

    Article  PubMed  Google Scholar 

  • Sakai T., Matsuura B. and Onji M. 1998 Serum paraoxonase activity and genotype distribution in Japanese patients with diabetes mellitus. Intern. Med. 37, 581–584.

    Article  CAS  PubMed  Google Scholar 

  • Samani N. J., Erdmann J., Hall A. S., Hengstenberg C., Mangino M., Mayer B. et al. 2007 Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453.

    Google Scholar 

  • Santos K. G., Tschiedel B., Schneider J., Souto K. and Roisenberg I. 2003 Diabetic retinopathy in Euro-Brazilian type 2 diabetic patients: relationship with polymorphisms in the aldose reductase, the plasminogen activator inhibitor-1 and the methylenetetrahydrofolate reductase genes. Diabetes Res. Clin. Pract. 61, 133–136.

    Article  CAS  PubMed  Google Scholar 

  • Santos K. G., Canani L. H., Gross J. L., Tschiedel B., Souto K. E. and Roisenberg I. 2005 Relationship of p22phox C242T polymorphism with nephropathy in type 2 diabetic patients. J. Nephrol. 18, 733–738.

    CAS  PubMed  Google Scholar 

  • Sayer A. A., Dennison E. M., Syddall H. E., Gilbody H. J., Phillips D. I. and Cooper C. 2005 Type 2 diabetes, muscle strength, and impaired physical function: the tip of the iceberg? Diabetes Care 28, 2541–2542.

    Google Scholar 

  • Sayyed S. G., Gaikwad A. B., Lichtnekert J., Kulkarni O., Eulberg D., Klussmann S. et al. 2010 Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10. Nephrol. Dial. Transplant 25, 1811–1817.

    Google Scholar 

  • Scott L. J., Mohlke K. L., Bonnycastle L. L., Willer C. J., Li Y., Duren W. L. et al. 2007 A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345.

    Google Scholar 

  • Sebat J., Lakshmi B., Troge J., Alexander J., Young J., Lundin P. et al. 2004 Large-scale copy number polymorphism in the human genome. Science 305, 525–528.

    Article  CAS  PubMed  Google Scholar 

  • Semenkovich C. F. and Heinecke J. W. 1997 The mystery of diabetes and atherosclerosis: time for a new plot. Diabetes 46, 327–334.

    Article  CAS  PubMed  Google Scholar 

  • Shan Z. X., Lin Q. X., Deng C. Y., Zhu J. N., Mai L. P., Liu J. L. et al. 2010 miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett. 584, 3592–3600.

    Article  CAS  PubMed  Google Scholar 

  • Sharma S., Kelly T. K. and Jones P. A. 2010 Epigenetics in cancer. Carcinogenesis 31, 27–36.

    Article  CAS  PubMed  Google Scholar 

  • Sladek R., Rocheleau G., Rung J., Dina C., Shen L., Serre D. et al. 2007 A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885.

    Article  CAS  PubMed  Google Scholar 

  • Stefanski A., Majkowska L., Ciechanowicz A., Frankow M., Safranow K., Parczewski M. et al. 2006 Lack of association between the Pro12Ala polymorphism in PPAR-gamma2 gene and body weight changes, insulin resistance and chronic diabetic complications in obese patients with type 2 diabetes. Arch. Med. Res. 37, 736–743.

    Article  CAS  PubMed  Google Scholar 

  • Stitt A. W. 2003 The role of advanced glycation in the pathogenesis of diabetic retinopathy. Exp. Mol. Pathol. 75, 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Suganthalakshmi B., Anand R., Kim R., Mahalakshmi R., Karthikprakash S., Namperumalsamy P. et al. 2006 Association of VEGF and eNOS gene polymorphisms in type 2 diabetic retinopathy. Mol. Vis. 12, 336–341.

    CAS  PubMed  Google Scholar 

  • Sydorova M. and Lee M. S. 2005 Vascular endothelial growth factor levels in vitreous and serum of patients with either proliferative diabetic retinopathy or proliferative vitreoretinopathy. Ophthalmic Res. 37, 188–190.

    Article  CAS  PubMed  Google Scholar 

  • Szaflik J. P., Wysocki T., Kowalski M., Majsterek I., Borucka A. I., Blasiak J. et al. 2008 An association between vascular endothelial growth factor gene promoter polymorphisms and diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 246, 39–43.

    Article  CAS  PubMed  Google Scholar 

  • Szyf M. 2009 Epigenetics, DNA methylation, and chromatin modifying drugs. Annu. Rev. Pharmacol. Toxicol. 49, 243–263.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N., Babazono T., Saito S., Sekine A., Tsunoda T., Haneda M. et al. 2003 Association of solute carrier family 12 (sodium/chloride) member 3 with diabetic nephropathy, identified by genome-wide analyses of single nucleotide polymorphisms. Diabetes 52, 2848–2853.

    Google Scholar 

  • Tang Z. H., Xiao P., Lei S. F., Deng F. Y., Zhao L. J., Deng H. Y. et al. 2007 A bivariate whole-genome linkage scan suggests several shared genomic regions for obesity and osteoporosis. J. Clin. Endocrinol. Metab. 92, 2751–2757.

    Google Scholar 

  • Terwilliger J. D., Zollner S., Laan M. and Paabo S. 1998 Mapping genes through the use of linkage disequilibrium generated by genetic drift: ’drift mapping’ in small populations with no demographic expansion. Hum. Hered. 48, 138–154.

    Article  CAS  PubMed  Google Scholar 

  • The International HapMap Consortium 2005 A haplotype map of the human genome. Nature 437, 1299–1320.

    Google Scholar 

  • Thomas D. C., Witte J. S. and Greenland S. 2007 Dissecting effects of complex mixtures: who’s afraid of informative priors? Epidemiology 18, 186–190.

    Article  PubMed  Google Scholar 

  • Town M., Jean G., Cherqui S., Attard M., Forestier L., Whitmore S. A. et al. 1998 A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat. Genet. 18, 319–324.

    Article  CAS  PubMed  Google Scholar 

  • Uhlmann K., Kovacs P., Boettcher Y., Hammes H. P. and Paschke R. 2006 Genetics of diabetic retinopathy. Exp. Clin. Endocrinol. Diabetes 114, 275–294.

    Article  CAS  PubMed  Google Scholar 

  • Ukkola O., Savolainen M. J., Salmela P. I., Von Dickhoff K. and Kesaniemi Y. A. 1994 DNA polymorphisms at the locus for human cholesteryl ester transfer protein (CETP) are associated with macro- and micro-angiopathy in non-insulin-dependent diabetes mellitus. Clin. Genet. 46, 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Ukkola O., Savolainen M. J., Salmela P. I., Von Dickhoff K. and Kesaniemi Y. A. 1995 DNA polymorphisms at the lipoprotein lipase gene are associated with macroangiopathy in type 2 (non-insulin-dependent) diabetes mellitus. Atherosclerosis 115, 99–105.

    Article  CAS  PubMed  Google Scholar 

  • Uthra S., Raman R., Mukesh B. N., Rajkumar S. A., Padmaja K. R., Paul P. G. et al. 2008 Association of VEGF gene polymorphisms with diabetic retinopathy in a south Indian cohort. Ophthalmic Genet. 29, 11–15.

    Article  CAS  PubMed  Google Scholar 

  • Vanden Berghe W., De Bosscher K., Boone E., Plaisance S. and Haegeman G. 1999 The nuclear factor-kappaB engages CBP/p300 and histone acetyltransferase activity for transcriptional activation of the interleukin-6 gene promoter. J. Biol. Chem. 274, 32091–32098.

    Article  CAS  PubMed  Google Scholar 

  • Vardarli I., Baier L. J., Hanson R. L., Akkoyun I., Fischer C., Rohmeiss P. et al. 2002 Gene for susceptibility to diabetic nephropathy in type 2 diabetes maps to 18q22.3-23. Kidney Int. 62, 2176–2183.

    Google Scholar 

  • Vinciguerra M., Carrozzino F., Peyrou M., Carlone S., Montesano R., Benelli R. et al. 2009 Unsaturated fatty acids promote hepatoma proliferation and progression through downregulation of the tumor suppressor PTEN. J. Hepatol. 50, 1132–1141.

    Article  CAS  PubMed  Google Scholar 

  • Visel A., Zhu Y., May D., Afzal V., Gong E., Attanasio C. et al. 2010 Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464, 409–412.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volkmar M., Dedeurwaerder S., Cunha D. A., Ndlovu M. N., Defrance M., Deplus R. et al. 2012 DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 31, 1405–1426.

    Article  CAS  PubMed  Google Scholar 

  • Wagenknecht L. E., Bowden D. W., Carr J. J., Langefeld C. D., Freedman B. I. and Rich S. S. 2001 Familial aggregation of coronary artery calcium in families with type 2 diabetes. Diabetes 50, 861–866.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q., Wang Y., Minto A. W., Wang J., Shi Q., Li X. et al. 2008 MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 22, 4126–4135.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y., Ng M. C., Lee S. C., So W. Y., Tong P. C., Cockram C. S. et al. 2003 Phenotypic heterogeneity and associations of two aldose reductase gene polymorphisms with nephropathy and retinopathy in type 2 diabetes. Diabetes Care 26, 2410–2415.

    Google Scholar 

  • Weber J. L. 1990 Human DNA polymorphisms and methods of analysis. Curr. Opin. Biotechnol. 1, 166–171.

    Article  CAS  PubMed  Google Scholar 

  • Wellcome Trust Case Control Consortium 2007 Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678.

    Google Scholar 

  • Wild S., Roglic G., Green A., Sicree R. and King H. 2004 Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27, 1047–1053.

    Article  PubMed  Google Scholar 

  • Xiao J., Luo X., Lin H., Zhang Y., Lu Y., Wang N. et al. 2007 MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J. Biol. Chem. 282, 12363–12367.

    Google Scholar 

  • Xu B., Chiu J., Feng B., Chen S. and Chakrabarti S. 2008 PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes. Diabetes Metab. Res. Rev. 24, 404–412.

    Article  CAS  PubMed  Google Scholar 

  • Yip J., Mattock M. B., Morocutti A., Sethi M., Trevisan R. and Viberti G. 1993 Insulin resistance in insulin-dependent diabetic patients with microalbuminuria. Lancet 342, 883–887.

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa M., Hishikawa K., Marumo T. and Fujita T. 2007 Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. J. Am. Soc. Nephrol. 18, 58–65.

    Article  CAS  PubMed  Google Scholar 

  • Zampetaki A., Kiechl S., Drozdov I., Willeit P., Mayr U., Prokopi M. et al. 2010 Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res. 107, 810–817.

    Article  CAS  PubMed  Google Scholar 

  • Zhang D., Li S., Cruz P. and Kone B. C. 2009 Sirtuin 1 functionally and physically interacts with disruptor of telomeric silencing-1 to regulate alpha-ENaC transcription in collecting duct. J. Biol. Chem. 284, 20917–20926.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W., Xia X., Reisenauer M. R., Hemenway C. S. and Kone B. C. 2006 Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCalpha in an aldosterone-sensitive manner. J. Biol. Chem. 281, 18059–18068.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W., Xia X., Reisenauer M. R., Rieg T., Lang F., Kuhl D. et al. 2007 Aldosterone-induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J. Clin. Invest. 117, 773–783.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao J., Jin L. and Xiong M. 2006 Nonlinear tests for genomewide association studies. Genetics 174, 1529–1538.

    Article  PubMed  Google Scholar 

  • Zhao X., Weir B. A., Laframboise T., Lin M., Beroukhim R., Garraway L. et al. 2005 Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res. 65, 5561–5570.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y., Ransom J. F., Li A., Vedantham V., Von Drehle M., Muth A. N. et al. 2007 Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the grant from China National Grant on Science and Technology (30570740) to support the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LINUO ZHOU.

Additional information

[Tang Z.-H., Fang Z. and Zhou L. 2013 Human genetics of diabetic vascular complications. J. Genet. 92, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Cite this article

TANG, ZH., FANG, Z. & ZHOU, L. Human genetics of diabetic vascular complications . J Genet 92, 677–694 (2013). https://doi.org/10.1007/s12041-013-0288-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-013-0288-1

Keywords

Navigation