Skip to main content
Log in

Cytogenetic characterization of Eurysternus caribaeus (Coleoptera: Scarabaeidae): evidence of sex-autosome fusion and diploid number reduction prior to species dispersion

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Mitotic and meiotic chromosomes of several populations of Eurysternus caribaeus (Coleoptera: Scarabaeidae) were analysed through conventional staining, C-banding, base-specific fluorochromes, silver nitrate staining and fluorescent in situ hybridization (FISH). All specimens showed 2n = 8 in their karyotypes, with a neo-XY sex system (Y is a submetacentric and X a metacentric) and three pairs of submetacentric autosomes. The analysis of constitutive heterochromatin (CH) revealed small blocks located in the centromeric region of all chromosomes which do not present positive staining under the fluorochromes CMA3 and DAPI. Silver nitrate staining revealed that the nucleolar organizer region (NORs) is associated with the sex chromosomes. The FISH technique revealed that rDNA sites in the X and Y are different in size. Data from different populations indicate that the diploid number reduction (2n = 8) observed in E. caribaeus is established and presumably has preceded the dispersion of this species. Moreover, this reduction occasioned the translocation of rDNA sites to the sex chromosomes, X and Y, an uncommon pattern in Scarabaeidae that was observed for the first time by the FISH in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida M. C., Campaner C. and Cella D. M. 2006 Karyotype characterization, constitutive heterochromatin and nucleolus organizer regions of Paranaita opima (Coleoptera, Chrysomelidae, Alticinae). Genet. Mol. Biol. 29, 475–481.

    Article  Google Scholar 

  • Angus R. B., Wilson C. J. and Mann D. J. 2007 A chromosomal analysis of 15 species of Gymnopleurini, Scarabaeini and Coprini (Coleoptera: Scarabaeidae). Tijdschr. Entomol. 15, 201–211.

    Google Scholar 

  • Bione E. G., Camparoto M. L. and Simões Z. L. P. 2005a A study of the constitutive heterochomatin and nucleolus organizer regions of Isocopris inhiata and Diabroctis mimas (Coleoptera: Scarabaeidae, Scarabaeinae) using C-banding, AgNO3 staining and FISH techniques. Genet. Mol. Biol. 28, 111–116.

    CAS  Google Scholar 

  • Bione E. G., Moura R. C., Carvalho R. and Souza M. J. 2005b Karyotype, C-and fluorescence banding pattern, NOR location and FISH study of five Scarabaeidae (Coleoptera) species. Genet. Mol. Biol. 28, 376–381.

    Google Scholar 

  • Bressa M. J., Papeschi A. G., Mola L. M. and Larramendy M. L. 1999 Meiotic studies in Dysdercus Guérin Méneville 1831 (Heteroptera: Pyrrhocoridae). I. Neo-XY in Dysdercus albofasciatus Berg 1878, a new sex chromosome determining system in Heteroptera. Chrom. Res. 7, 503–508.

    Article  PubMed  CAS  Google Scholar 

  • Cabral-de-Mello D. C., Silva F. A. B. and Moura R. C. 2007 Karyotype characterization of Eurysternus caribaeus: the smallest diploid number among Scarabaeidae (Coleoptera: Scarabaeoidea). Micron 38, 323–325.

    Article  PubMed  Google Scholar 

  • Cabral-de-Mello D. C., Oliveira S. G., Ramos I. C. and Moura R. C. 2008 Karyotype differentiation patterns in species of the subfamily Scarabaeinae (Scarabaeidae: Coleoptera). Micron 39, 1243–1250.

    Article  PubMed  Google Scholar 

  • Charlesworth B., Jarne P. and Assimacopoulos S. 1994 The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. Genet. Res. 64, 183–197.

    Article  PubMed  CAS  Google Scholar 

  • Colomba M. S., Monteresino E., Vitturi R. and Zunino Z. 1996 Characterization of mitotic chromosomes of the scarab beetles Glyphoderus sterquilinus (Westwood) and Bubas bison (L.) (Coleoptera: Scarabaeidae) using conventional and banding techniques. Biol. Zent. Bl. 115, 58–70.

    Google Scholar 

  • Colomba M. S., Vitturi R. and Zunino M. 2000 Karyotype analyzes, banding, and fluorescent in situ hybridization in the Scarab beetle Gymnopleurus sturmi McLeady (Coleoptera, Scarabaeoidea, Scarabaeidae). J. Hered. 91, 260–264.

    Article  PubMed  CAS  Google Scholar 

  • Colomba M. S., Vitturi R., Volpe N., Lannino A. and Zunino M. 2004 Karyotype, banding and rDNA FISH in the scarab beetle Anoplotrupes stercorosus (Coleoptera: Scarabaeoidea: Geotrupidae). Description and comparative analysis. Micron 35, 717–720.

    Article  PubMed  CAS  Google Scholar 

  • Colomba M. S., Vitturi R., Libertini A., Gregorini A. and Zunino M. 2006 Heterochromatin of the scarab beetle, Bubas bison (Coleoptera: Scarabaeidae) II. Evidence for AT-rich compartmentalization and a high amount of rDNA copies. Micron 37, 47–51.

    Article  PubMed  CAS  Google Scholar 

  • Costa C. 2000 Estado de conocimiento de los Coleoptera Neotropicales. In Hacia un proyecto CYTED para el inventario y estimacion de la diversidad entomologica en iberoamerica: prIBES-2000, monografias tercer milenio. (ed. F. Martin-Piera, J. J. Morrone and A. Melic), vol. 1, pp. 99–114. SEA, Zaragoza.

    Google Scholar 

  • Dias C. M., Schneider M. C., Rosa S. P., Costa C. and Cella D. M. 2007 The first cytogenetic report of fireflies (Coleoptera, Lampyridae) from Brazilian fauna. Acta Zool. 88, 309–316.

    Article  Google Scholar 

  • Dover G. 2002 Molecular drive. Trends Genet. 18, 587–589.

    Article  PubMed  Google Scholar 

  • Dutrillaux A. M., Moulin S. and Dutrillaux B. 2006 Use of meiotic pachytene stage of spermatocytes for karyotypic studies in insects. Chrom. Res. 14, 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux A. M., Xie H. and Dutrillaux B. 2007 High chromosomal polymorphism and heterozygosity in Cyclocephala tridentata from Guadalouoe: chromosome comparison with some other species of Dynastinae (Coleoptera: Scarabaeidae). Cytogenet. Genome Res. 119, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira A. and Mesa A. 2007 Cytogenetics studies in thirteen Brazilian species of Phaneropterinae (Orthoptera: Tettigonioidea: Tettigoniidae): Main evolutive trends based on their karyological traits. Neotrop. Entomol. 36(4), 503–509.

    Article  PubMed  Google Scholar 

  • Halffter G. and Halffter V. 1976 Notas sobre Eurysternus (Coleoptera, Scarabaeidae, Scarabaeinae). Folia Entomol. Mex. 37, 43–86.

    Google Scholar 

  • Halffter G. and Favila M. E. 1993 The Scarabaeinae (Insecta: Coleoptera) an animal group for analysing, inventorying and monitoring biodiversity in tropical rainforest and modified landscapes. Biol. Int. 27, 15–21.

    Google Scholar 

  • Hewitt G. M. 1979 Orthoptera: grasshoppers and crickets. Gerbruder Borntrager, Berlin.

    Google Scholar 

  • Jessop L. 1985 An identification guide to Eurysternini dung beetles (Coleoptera, Scarabaeidae). J. Nat. Hist. 19, 1087–1111.

    Article  Google Scholar 

  • Karagyan G., Kuznetsova V. G. and Lachowska D. 2004 New cytogenetic data on Armenian buprestids (Coleoptera, Buprestidae) with a discussion of karyotype variation within the family. Folia Biol. 52, 151–158.

    Article  Google Scholar 

  • Macaisne N., Dutrillaux A. M. and Dutrillaux B. 2006 Meiotic behaviour of a new complex X-Y-autosome translocation and amplified heterocromatin in Jumnos ruckeri (Saunders) (Coleoptera, Scarabaeidae, Cetoniinae). Chrom. Res. 14, 909–918.

    Article  PubMed  CAS  Google Scholar 

  • Machado V., Galián J., Araújo A. M. and Valente V.L. S. 2001 Cytogenetics of eight neotropical species of Chauliognathus Henzt, 1830: implications on the ancestral karyotype in Cantharidae (Coleoptera). Hereditas 134, 121–124.

    Article  PubMed  CAS  Google Scholar 

  • Martinez A. 1988 Notas sobre Eurysternus Dalman (Coleoptera, Scarabaeidae). Entomol. Bras. 12, 279–304.

    Google Scholar 

  • Martins V. G. 1994 The chromosome of five species of Scarabaeidae (Polyphaga, Coleoptera). Naturallia 19, 89–96.

    Google Scholar 

  • Mola L. M. and Papeschi A. G. 1994 Karyotype evolution in Aeshna (Aeshnidae, Odonata). Hereditas 121, 185–189.

    Article  Google Scholar 

  • Mola L. M., Papeschi A. G. and Taboada Carrillo 1999 Cytogenetics of seven species of dragonflies. Hereditas 131, 147–153.

    Article  Google Scholar 

  • Moscone E. A., Matzke M. A. and Matzke A. J. M. 1996 The use of combined FISH/GISHin conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105, 231–236.

    Article  CAS  Google Scholar 

  • Moura R. C., Souza M. J., Melo N. F. and Lira-Neto A. C. 2003 Karyotypic characterization of representatives from Melolonthinae (Coleoptera: Scarabaeidae): Karyotypic analysis, banding and fluorescent in situ hybridization (FISH). Hereditas 138, 200–206.

    Article  Google Scholar 

  • Palomeque T. and Lorite P. 2008 Satellite DNA in insects: a review. Heredity 100, 564–573.

    Article  PubMed  CAS  Google Scholar 

  • Poggio M. G., Bressa M. J. and Papeschi A. G. 2007 Karyotype evolution in Reduviidae (Insecta: Heteroptera) with special reference to Stenopodainae and Harpactorinae. Comp. Cytogen. 1, 159–168.

    Google Scholar 

  • Rezac M., Král J., Musilová J. and Pekár S. 2006 Unusual karyotype diversity in the European spiders of the genus Atypus (Araneae: Atypidae). Hereditas 143, 123–129.

    Article  PubMed  Google Scholar 

  • Rozek M., Lachowska D., Petitpierre E. and Holecová M. 2004 Cbands on chromosomes of 32 beetles species (Coleoptera: Elateridae, Cantharidae, Oedemeridae, Cerambycidae, Anthicidae, Chrysomelidae, Attelabidae and Curculionidae). Hereditas 140, 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Rufas J. S., Giménez-Abian J., Suja J. A. and Garcia de la Vega C. 1987 Chromosome organization in meiosis revealed by light microscope analysis of silver-stained cores. Genome 29, 706–712.

    Google Scholar 

  • Schneider M. C., Almeida M. C., Rosa S. P., Costa C. and Cella D. M. 2006 Evolutionary chromosomal differentiation among four species of Conoderus Eschscholtz, 1829 (Coleoptera, Elateridae, Agrypninae, Conoderini) detected by standard staining, Cbanding, silver nitrate impregnation, and CMA3/DA/DAPI staining. Genetica 128, 333–346.

    Article  PubMed  Google Scholar 

  • Schneider M. C., Rosa S. P., Almeida M. C., Costa C. and Cella D. M. 2007a Strategies of karyotype differentiation in Elateridae (Coleoptera, Polyphaga). Micron 38, 590–598.

    Article  PubMed  Google Scholar 

  • Schneider M. C., Rosa S. P., Almeida M. C., Costa C. and Cella D. M. 2007b Chromosomal similarities and differences among four neotropical Elateridae (Conoderini and Pyrophorini) and other related species, with comments on the NOR patterns in Coleoptera. J. Zool. Syst. Evol. Res. 45, 308–316.

    Article  Google Scholar 

  • Schweizer D. 1976 Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58, 307–324.

    Article  PubMed  CAS  Google Scholar 

  • Stahlavsky F. and Kral J. 2004 Karyotype analysis and achiasmatic meiosis in pseudoscorpions of the family Chthoniidae (Arachnida: Pseudoscorpiones). Hereditas 140, 49–60.

    Article  PubMed  Google Scholar 

  • Smith S. G. and Virkki N. 1978 Coleoptera. In Animal cytogenetics (ed. B. John), pp. 366 Borntraeger, Berlin.

    Google Scholar 

  • Sumner A. T. 1972 A simple technique for demonstrating centromeric heterocromatin. Exp. Cell. Res. 75, 304–306.

    Article  PubMed  CAS  Google Scholar 

  • Vaz-de-Mello F. Z. 2000 Estado de conhecimento dos Scarabaeidae s. str. (Coleoptera: Scarabaeoidea) do Brasil. In Hacia un proyecto CYTEDpara el inventario y estimacion de la diversidad entomologica en iberoamérica prIBES-2000 monografias tercer milenio, (ed. F. Martin- Piera, J. J. Morrone and A. Melic), vol. 1 pp. 183–195. SEA, Zaragoza.

    Google Scholar 

  • Virkki N., Mazzella C. and Denton A. 1990 Staining of substances adjacent to the Xyp sex bivalent of some weevils (Coleoptera: Curculionidae). J. Agric. Univ. Puerto Rico 74, 405–418.

    Google Scholar 

  • Virkki N., Mazzella C. and Denton A. 1991 Silver staining of the coleopteran Xyp sex bivalent. Cytobios 67, 45–63.

    Google Scholar 

  • Wilson C. J. and Angus R. B. 2004 A chromosomal analysis of ten European species of Aphodius Illiger, subgenera Acrossus Mulsant, Nimbus Muldant and Rey and Chilothorax Motschulsky (Coleoptera: Aphodiidae). Koleopterol. Rundsch. 74, 367–374.

    Google Scholar 

  • Wilson C. J. and Angus R. B. 2005 A chromosomal analysis of 21 species of Oniticellini and Onthophagini (Coleoptera: Scarabaeidae). Tijdschr. Entomol. 148, 63–76.

    Google Scholar 

  • Wilson C. J. and Angus R. B. 2006 A chromosomal analysis of eight species of Aphodius Illiger subgenera Agiolinus Schmidt, Agrilinus Mulsant and Rey and Planolinus Mulsant and Rey (Coleoptera: Aphodiidae). Proc. Russ. Entomol. Soc. 77, 28–33.

    Google Scholar 

  • Yadav J. S. and Pillai R. K. 1979 Evolution of karyotypes and phylogenetic relationships in Scarabaeidae (Coleoptera). Zool. Anz. 202, 105–118.

    Google Scholar 

  • Yadav J. S., Pillai R. K. and Karamjeet 1979 Chromosome numbers of Scarabaeidae (Polyphaga: Coleoptera). Coleopt. Bull. 33, 309–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Arcanjo, A.P., Cabral-De-Mello, D.C., Silva, A.E.B.E. et al. Cytogenetic characterization of Eurysternus caribaeus (Coleoptera: Scarabaeidae): evidence of sex-autosome fusion and diploid number reduction prior to species dispersion. J Genet 88, 177–182 (2009). https://doi.org/10.1007/s12041-009-0025-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-009-0025-y

Keywords

Navigation