Skip to main content
Log in

Value addition to lignocellulosics and biomass-derived sugars: An insight into solid acid-based catalytic methods

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

For the synthesis of important platform chemicals such as sugars (xylose and arabinose) and furans (furfural and 5-hydroxymethylfurfural (HMF)) from carbohydrates (hemicellulose and fructose) solid acid catalysts are employed. Similarly, over solid acid catalysts, conversion of lignin into aromatic monomers is performed. It is observed that in the dehydration of fructose, because of higher hydrothermal stability, silicoaluminophosphate (SAPO) catalysts give better activity (78% HMF yield) compared with other solid acid catalysts (<63% HMF yield) at 175°C. Particularly, SAPO-44 catalyst can be reused at least 5 times with marginal decrease in the activity. Zeolite, HUSY (Si/Al = 15) is active in the conversion of isolated (pure) hemicellulose to produce 41% C5 sugars in water. The catalyst is also active in the selective conversion of hemicellulose from bagasse to yield 59% C5 sugars. It is possible to obtain high yields of furfural (54%) directly from bagasse if instead of water, water+toluene solvent system is used. Depolymerization of lignin using HUSY catalyst produced aromatic monomers with 60% yield at 250°C. A detailed catalyst characterization study is performed to understand the correlation between catalyst activity and morphology. To understand the effect of impurities present in the substrate over solid acid catalysts, metal-exchange study is carried out.

Efficient methods for the synthesis of xylose+arabinose, furfural, HMF and aromatic monomers from hemicellulose, fructose and lignin, respectively, using solid catalysts were described. Catalysts were characterized with various physico-chemical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 5.
Fig. 8

Similar content being viewed by others

References

  • Cao Q, Guo X, Guan J, Mu X and Zhang D 2011 Appl. Catal. A: Gen. 403 98

    Google Scholar 

  • Alonso D M, Bond J Q and Dumesic J A 2010 Green Chem. 12 1493

  • Geboers J A, Van de Vyver S, Ooms R, Op de Beeck B, Jacobs P A and Sels B F 2011 Catal. Sci. Technol. 1 714

    Google Scholar 

  • Kobayashi H, Ohta H and Fukuoka A 2012 Catal. Sci. Technol. 2 869

    Google Scholar 

  • Rosatella A A, Simeonov S P, Frade R F M and Afonso C A M 2011 Green Chem. 13 754

  • Binder J B and Raines R T 2009 J. Am. Chem. Soc. 131 1979

  • Fan L T, Gharpuray M M and Lee Y H 1987 Cellulose hydrolysis (Heidelberg, Berlin: Springer) vol. 3, p. 1–68.

  • Pandey A, Biswas S, Sukumaran R and Kausik N 2009 Availability of Indian Biomass Resources for Exploitation (ed) Chidamabaram R, Technology Information Forecasting & Assessment Council

  • Drummond A R F and Drummond I W 1996 Ind. Eng. Chem. Res. 35 1263

    Google Scholar 

  • James O O,Maity S, Usman L A, Ajanaku K O, Ajani OO, Siyanbola T O, Sahu S and Chaubey R 2010 Energ. Environ. Sci. 3 1833

    Google Scholar 

  • Karinen R, Vilonen K and Niemela M 2011 Chem. Sus. Chem. 4 1002

    Google Scholar 

  • Serrano Ruiz J C, Luque R and Sepulveda Escribano A 2011 Chem. Soc. Rev. 40 5266

  • Stark K, Taccardi N, Bosmann A and Wasserscheid P 2010 Chem. Sus. Chem. 3 719

    Google Scholar 

  • Hu L, Zhao G, Hao W, Tang X, Sun Y, Lin L and Liu S 2012 RSC Adv. 2 11184

  • Sitthisa S and Resasco D 2011 Catal. Lett. 141 784

    Google Scholar 

  • West R M, Liu Z Y, Peter M, Gartner C A and Dumesic J A 2008 J. Mol. Catal. A: Chem. 296 18

  • KimMG, Boyd G and Strickland R 1994 Holzforschung 48 6

  • Weingarten R, Cho J, Conner J W C and Huber G W 2010 Green Chem. 12 1423

  • Riansa Ngawong W and Prasertsan P 2011 Carbohydr. Res. 346 103

  • Yemis O and Mazza G 2011 Bioresour. Technol. 102 7371

    Google Scholar 

  • O’Neill R, AhmadMN, Vanoye L and Aiouache F 2009 Ind. Eng. Chem. Res. 48 4300

  • Choudhary V, Pinar A B, Sandler S I, Vlachos D G and Lobo R F 2011 ACS Catal. 1 1724

  • Lam E, Chong J H, Majid E, Liu Y, Hrapovic S, Leung A C W and Luong J H T 2012 Carbon 50 1033

  • Karinen R, Vilonen K and Niemela M 2011 Chem. Sus. Chem. 4 1002

    Google Scholar 

  • Takagaki A, Ohara M, Nishimura S and Ebitani K 2010 Chem. Lett. 39 838

    Google Scholar 

  • Lam E, Majid E, Leung A C W, Chong J H, Mahmoud K A and Luong J H T 2011 Chem. Sus. Chem. 4 535

  • Dias A S, Pillinger M and Valente A A 2005 J. Catal. 229 414

  • Kim S, You S, Kim Y, Lee S, Lee H, Park K and Park E 2011 Kor. J. Chem. Eng. 28 710

  • Dias A S, Lima S R, Pillinger M and Valente A A 341 Carbohydr. Res. 2946.

  • Dias A S, Pillinger M and Valente A A 2006 Micro. Meso. Mater. 94 214

    Google Scholar 

  • Daengprasert W, Boonnoun P, Laosiripojana N, Goto M and Shotipruk A 2011 Ind. Eng. Chem. Res. 50 7903

    Google Scholar 

  • Zhang J, Zhuang J, Lin L, Liu S and Zhang Z 2012 Biomass Bioenerg. 39 73

  • Moreau C, Durand R, Peyron D, Duhamet J and Rivalier P 1998 Ind. Crop. Prod. 7 95

    Google Scholar 

  • Croker J R and Bowrey R G 1984 Ind. Eng. Chem. Fund. 23 480

    Google Scholar 

  • Lessard J, Morin J F, Wehrung J F, Magnin D and Chornet E 2010 Top. Catal. 53 1231

    Google Scholar 

  • Antunes M M, Lima S, Fernandes A, Pillinger M, RibeiroM F and Valente A A 2012 Appl. Catal. A: Gen. 243 417–418.

    Google Scholar 

  • Lima S R, Pillinger M and Valente A A 2008 Catal. Commun. 9 2144

    Google Scholar 

  • Shi X, Wu Y, Li P, Yi H, Yang M and Wang G 2011 Carbohydr. Res. 346 480

  • Suzuki T, Yokoi T, Otomo R, Kondo J N and Tatsumi T 2011 Appl. Catal. A: Gen. 408 117

  • Sadaba I, Lima S R, Valente A A and Lopez Granados M 2011 Carbohydr. Res. 346 2785

  • Shi X, Wu Y, Yi H, Rui G, Li P, Yang M and Wang G 2011 Energies 4 669

  • Agirrezabal Telleria I, Larreategui A, Requies J, Guemez M B and Arias P L 2011 Bioresour. Technol. 102 7478

    Google Scholar 

  • Lima S R, Fernandes A, Antunes M, Pillinger M, Ribeiro F and Valente A 2010 Catal. Lett. 135 41

    Google Scholar 

  • Dias A S, Lima S R, Carriazo D, Rives V, Pillinger M and Valente A A 2006 J. Catal. 244 230

  • Tao F, Song H and Chou L 2011 Can. J. Chem. 89 83

  • Lima S R, Neves P, Antunes M M, PillingerM, Ignatyev N and Valente A A 2009 Appl. Catal. A: Gen. 363 93

  • Dhepe P L and Sahu R 2010 Green Chem. 1 2153

  • Sahu R and Dhepe P L 2012 Chem. Sus. Chem. 5 751

    Google Scholar 

  • Kim Y, Hendrickson R, Mosier N and Ladisch M R 2005 Energ. Fuel 19 2189

  • Kim S B and Lee Y Y 1985 Biotechnol. Bioeng. Symp. 15 83

    Google Scholar 

  • Kusema B T, Hilmann G, Maki Arvela P, Willfor S, Holmbom B, Salmi T and Murzin D 2011 Catal. Lett. 141 408

    Google Scholar 

  • Bicker M, Hirth J and Vogel H 2003 Green Chem. 5 280

  • Zakrzewska M E, Bogel-Lukasik E and Bogel Lukasik R 2011 Chem. Rev. 111 397

  • Leshkov Y R, Barrett C J, Liu Z Y and Dumesic J A 2007 Nature 447 982

  • YangW and Sen A 2010 Chem. Sus. Chem. 3 597

    Google Scholar 

  • Xiang X, He L, Yang Y, Guo B, Tong D and Hu C 2011 Catal. Lett. 141 735

  • Gupta N K, Nishimura S, Takagaki A and Ebitani K 2011 Green Chem. 13 824

  • Peng L, Lin L, Zhang J, Zhuang J, Zhang B and Gong Y 2010 Molecule 15 5258

  • Huber G W, Chheda J N, Barrett C J and Dumesic J A 2005 Science 308 1446

    Google Scholar 

  • Qi X, Watanabe M, Aida T M and Smith R L 2008 Catal. Commun. 9 2244

  • Dutta S, De S, Patra A K, SasidharanM, Bhaumik A and Saha B 2011 Appl. Catal. A: Gen. 133 409–410

  • Shimizu K, Uozumi R and Satsuma A 2009 Catal. Commun. 10 1849

    Google Scholar 

  • Takagaki A, Ohara M, Nishimura S and Ebitani K 2009 Chem. Commun. 6276

  • Zhu H, Cao Q, Li C and Mu X 346 Carbohydr. Res. 2016.

  • Lai L and Zhang Y 2011 Chem. Sus. Chem. 4 1745

  • Moreau C, Durand R, Razigade S, Duhamet J, Faugeras P, Rivalier P, Ros P and Avignon G 1996 Appl. Catal. A: Gen. 145 211

  • Ordomsky V V, van der Schaaf J, Schouten J C and Nijhuis T A 2012 J. Catal. 287 68

  • Zhao Q, Wang L, Zhao S, Wang X and Wang S 2011 Fuel 90 2289

  • Fan C, Guan H, Zhang H, Wang J, Wang S andWang X 2011 Biomass Bioenerg. 35 2659

  • Yang F, Liu Q, Yue M, Bai X and Du Y 2011 Chem. Commun. 47 4469

  • Qi X, Watanabe M, Aida T M and Smith R L 2008 Ind. Eng. Chem. Res. 47 9234

    Google Scholar 

  • Moliner M, Roman Leshkov Y and Davis M E 2010 Proc Natl. Acad. Sci. 107 6164

    Google Scholar 

  • Nikolla E, Roman Leshkov Y, Moliner M and Davis M Davis ME 2011 ACS Catal. 1 408

  • Yamaguchi K, Sakurada T, Ogasawara Y and Mizuno N 2011 Chem. Lett. 40 542

    Google Scholar 

  • NREL/BR-510-40742 March 2007 Research Advances Cellulosic Ethanol, NREL Leads the Way

  • Shabtai J S, Zmierczak W W and Chornet E 1999 U.S. Patent 5 959 16

  • Shabtai J S, Zmierczak W W and Chornet E 2001 U.S. Patent 6 172 272

  • Watanabe M, Inomata H, Osada M, Sato T, Adschiri T and Arai K 2003 Fuel 82 545

  • Roberts V M, Stein V, Reiner T, Lemonidou A, Li X and Lercher J A 2011 Chem. Eur. J. 17 5939

    Google Scholar 

  • Harris E E, D’Ianni J and Adkins H 1938 J. Am. Chem. Soc. 60 1467

    Google Scholar 

  • Pepper J M and Lee Y W 1969 Can. J. Chem. 47 723

    Google Scholar 

  • Thring R W and Breau J 1996 Fuel 75 795

  • Ratcliff M A, Johnson D K, Posey F L and Chum H L 1988 Appl. Biochem. Biotechnol. 17 151

    Google Scholar 

  • Meier D, Ante R and Faix O 1992 Bioresour. Technol. 40 171

    Google Scholar 

  • Adjaye J D and Bakhshi N N 1995 Fuel Process. Technol. 45 161

    Google Scholar 

  • Wahyudiono Kanetake T, Sasaki M and Goto M 2007 Chem. Eng. Technol. 30 1113

    Google Scholar 

  • Wahyudiono Sasaki M and Goto M 2009 Fuel 88 1656

    Google Scholar 

  • Sharma R K and Bakhshi N N 1991 Bioresour. Technol. 35 57

    Google Scholar 

  • MissonM, Haron R, KamaroddinM F A and Amin N A S 2009 Bioresour. Technol. 100 2867

  • Prakash A M, Unnikrishnan S and Rao K V 1994 Appl. Catal. A: Gen. 110 1

    Google Scholar 

  • Sinha A K, Sainkar S and Sivasanker S 1999 Micropor. Mesopor. Mater. 31 321

    Google Scholar 

  • Bandura A V and Lvov S N 2006 J. Phys. Chem. Ref. Data 35 15

    Google Scholar 

  • Bhaumik P and Dhepe P L 2013 RSC Adv. 3 17156

  • Deepa A K and Dhepe P L 2014 RSC Adv. 4 12625

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PARESH LAXMIKANT DHEPE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BHAUMIK, P., DEEPA, A.K., KANE, T. et al. Value addition to lignocellulosics and biomass-derived sugars: An insight into solid acid-based catalytic methods. J Chem Sci 126, 373–385 (2014). https://doi.org/10.1007/s12039-014-0574-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0574-3

Keywords

Navigation