Skip to main content

Advertisement

Log in

Animal models for the study of arterial hypertension

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Hypertension is one of the leading causes of disability or death due to stroke, heart attack and kidney failure. Because the etiology of essential hypertension is not known and may be multifactorial, the use of experimental animal models has provided valuable information regarding many aspects of the disease, which include etiology, pathophysiology, complications and treatment. The models of hypertension are various, and in this review, we provide a brief overview of the most widely used animal models, their features and their importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

Abbreviations

ANG II:

angiotensin II

BHR:

borderline hypertensive rat

CBF:

cerebral blood flow

DOCA:

11-desoxycorticosterone acetate

DR:

Dahl salt-resistant rat

DS:

Dahl salt-sensitive rat

EDCF:

endothelium-derived constricting factor

EDRF:

endothelium-derived relaxing factor

HR:

heart rate

LV:

left ventricle

MAP:

mean arterial pressure

PRA:

plasma rennin activity

RAAS:

rennin–angiotensin–aldosterone system

ROS:

reactive oxygen species

RSNA:

renal sympathetic nerve activity

SAD:

sinoaortic baroreceptors

SHR:

spontaneously hypertensive rat

SHRSP:

stroke-prone spontaneously hypertensive rat

SOD:

superoxide dismutase

WKY:

Wistar–Kyoto

References

  • Bachmann S, Peters J, Engler E, Ganten D and Mullins J 1992 Transgenic rats carrying the mouse renin gene: morphological characterization of a low-renin hypertension model. Kidney Int. 41 24–36

    Article  PubMed  CAS  Google Scholar 

  • Bader M, Zhao Y, Sander M, Lee MA, Bachmann J, Böhm M, Djavidani B, Peters J, Mullins JJ and Ganten D 1992 Role of tissue renin in the pathophysiology of hypertension in TGR(mREN2)27 rats. Hypertension 19 681–686

    PubMed  CAS  Google Scholar 

  • Badyal DK, Lata H and Dadhich A P 2003 Animal models of hypertension and effect of drugs. Indian J. Pharmacol. 35 349–362

    CAS  Google Scholar 

  • Barrett C J, Guild S J, Ramchandra R, Malpas S C 2005 Baroreceptor denervation prevents sympathoinhibition during angiotensin II-induced hypertension; Hypertension 46 168–72

    Article  PubMed  CAS  Google Scholar 

  • Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Katz SE, Douglas PS and Lorell BH 2000 Chronic N G-Nitro-L-Arginine methyl ester-induced hypertension novel molecular adaptation to systolic load in absence of hypertrophy. Circulation 101 423–429

    PubMed  CAS  Google Scholar 

  • Baylis C, Mitruka B and Deng A 1992 Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J. Clin. Invest. 90 278–281

    Article  PubMed  CAS  Google Scholar 

  • Bechtold AG, Patel G, Hochhaus G and Scheuer D A 2009 Chronic blockade of hindbrain glucocorticoid receptors reduces blood pressure responses to novel stress and attenuates adaptation to repeated stress. Am. J. Physiol.-Reg. I. 296 R1445–R1454

    CAS  Google Scholar 

  • Biancardi VC, Bergamaschi CT, Lopes OU and Campos RR 2007 Sympathetic activation in rats with L-NAME-induced hypertension. Braz. J. Med. Biol. Res. 40 401–408

    Article  PubMed  CAS  Google Scholar 

  • Campese VM 1994 Salt sensitivity in hypertension: renal and cardiovascular implications. Hypertension 23 531–550

    PubMed  CAS  Google Scholar 

  • Channa ML, Somova L and Nadar A 2004 Facets of the metabolic syndrome in Dahl hypertensive rats. Cardiovas. J. S. Afr. 15 61–63

    CAS  Google Scholar 

  • Dahl LK, Heine M and Tassinari L 1962 Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature (London) 194 480–482

    Article  CAS  Google Scholar 

  • DiBona GF and Jones SY 2001 Dynamic analysis of renal nerve activity responses to baroreceptor denervation in hypertensive rats. Hypertension 37 1153–1163

    PubMed  CAS  Google Scholar 

  • Doggrell SA and Brown L 1998 Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc. Res. 39 89–105

    Article  PubMed  CAS  Google Scholar 

  • Engelmann GL, Vitullo JC and Gerrity RG 1987 Morphometric analysis of cardiac hypertrophy during development, maturation, and senescence in spontaneously hypertensive rats. Circ. Res. 60 487–494

    PubMed  CAS  Google Scholar 

  • Esch T, Stefano GB, Fricchione GL and Benson H 2002 Stress in cardiovascular diseases. Med. Sci. Monitor 8 RA93–RA101

    Google Scholar 

  • Fazan R Jr, da Silva VJD and Salgado HC 2001 Modelos de hipertensão arterial. Braz. J. Hypertens. 8 19–29

    Google Scholar 

  • Ferrario CM, Varagic J, Habibi J, Nagata S, Kato J, Chappell MC, Trask AJ, Kitamura K, Whaley-Connell A and Sowers JR 2009 Differential regulation of angiotensin-(1-12) in plasma and cardiac tissue in response to bilateral nephrectomy. Am. J. Physiol.-Heart C. 296 H1184–H1192

    Article  CAS  Google Scholar 

  • Friedman R and Dahl LK 1975 The effect of chronic conflict on the blood pressure of rats with a genetic susceptibility to experimental hypertension. Psychosom. Med. 37 402–416

    PubMed  CAS  Google Scholar 

  • Fuchs LC, Hoque AM and Clarke NL 1998 Vascular and hemodynamic effects of behavioral stress in borderline hypertensive and Wistar-Kyoto rats. Am. J. Physiol.-Reg. I. 274 R375–R382

    CAS  Google Scholar 

  • Fujiwara N, Osanai T, Kamada T, Katoh T, Takahashi K and Okumura K 2000 Study on the relationship between plasma nitrite and nitrate level and salt sensitivity in human hypertension: modulation of nitric oxide synthesis by salt intake. Circulation 101 856–861

    PubMed  CAS  Google Scholar 

  • Garwitz ET and Jones AW 1982 Aldosterone infusion into the rat and dose-dependent changes in blood pressure and arterial ionic transport. Hypertension 4 374–381

    PubMed  CAS  Google Scholar 

  • Gersch M S, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, Sautin YY, Johnson RJ and Nakagawa T 2007 Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am. J. Physiol.-Renal. 293 F1256–F1261

    Article  CAS  Google Scholar 

  • Giani JF, Mayer MA, Muñoz MC, Silberman E A, Höcht C, Taira CA, Gironacci MM, Turyn D and Dominici FP 2009 Chronic infusion of angiotensin-(1–7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. Am. J. Physiol.-Endoc. M. 296 E262–E271

    CAS  Google Scholar 

  • Goldblatt H, Lynch J, Hanzal RF and Summerville WW 1934 The production of persistent elevation of systolic blood pressure by means of renal ischemia. J. Exp. Med. 59 347–379

    Article  PubMed  CAS  Google Scholar 

  • Guyton AC 1991 Blood pressure control–special role of the kidneys and body fluids. Science 252 1813–1816

    Article  PubMed  CAS  Google Scholar 

  • Hatton D C, Brooks V, Qi Y, McCarron DA 1997 Cardiovascular response to stress: baroreflex resetting and hemodynamics. Am J Physiol; 272 R1588–94

    PubMed  CAS  Google Scholar 

  • Henning EC, Warach S and Spatz M 2010 Hypertension-induced vascular remodeling contributes to reduced cerebral perfusion and the development of spontaneous stroke in aged SHRSP rats. J. Cerebr. Blood F. Met. 30 827–836

    Article  Google Scholar 

  • Henry JP 1975 The induction of acute and chronic cardiovascular disease in animals by psychosocial stimulation. Int. J. Psyc. Med. 6 147–158

    Article  CAS  Google Scholar 

  • Henry JP, Liu YY, Nadra WE, Qian CG, Mormede P, Lemaire V, Ely D and Hendley ED 1993 Psychosocial stress can induce chronic hypertension in normotensive strains of rats. Hypertension 21 714–723

    PubMed  CAS  Google Scholar 

  • Itoh H, Mukoyama M, Pratt RE, Gibbons GH and Dzau VJ 1993 Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J. Clin. Invest. 91 2268–2274.

    Article  PubMed  CAS  Google Scholar 

  • Kang DG, Moon MK, Sohn EJ, Lee DH and Lee HS 2004 Effects of morin on blood pressure and metabolic changes in fructose-induced hypertensive rats. Biol. Pharm. Bull. 27 1779–1783

    Article  PubMed  CAS  Google Scholar 

  • Krieger EM 1964 Neurogenic hypertension in the rat. Circ. Res. 15 511–521

    PubMed  CAS  Google Scholar 

  • Ledingham JM and Pelling D 1970 Haemodynamic and other studies in the renoprival hypertensive rat. J. Physiol. 210 233–253

    PubMed  CAS  Google Scholar 

  • Liard JF, Cowley AW Jr, McCaa RE, McCaa CS and Guyton AC 1974 Renin, aldosterone body fluid volumes and the baroreceptor reflex in the development and reversal of Goldblatt hypertension in conscious dogs. Circ. Res. 34 549–560

    PubMed  CAS  Google Scholar 

  • McBryde FD, Guild SJ, Barrett CJ, Osborn JW and Malpas SC 2007 Angiotensin II-based hypertension and the sympathetic nervous system: the role of dose and increased dietary salt in rabbits. Exp. Physiol. 92 831–840

    Article  PubMed  CAS  Google Scholar 

  • McCarty R and Gold PE 1996 Catecholamines, stress, and disease: a psychobiological perspective. Psychosom. Med. 58 590–597

    PubMed  CAS  Google Scholar 

  • Mullins JJ, Peters J and Ganten D 1990 Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature (London) 344 541–544

    Article  CAS  Google Scholar 

  • Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T and Fujita T 2006 Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 47 1084–1093

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Cid J, Maeso R, Perez-Vizcaino F, Cachofeiro V, Ruilope LM, Tamargo J and Lahera V 1995 Effects of losartan on blood pressure, metabolic alterations, and vascular reactivity in the fructose-induced hypertensive rat. Hypertension 26 1074–1078

    PubMed  CAS  Google Scholar 

  • Okamoto K and Aoki K 1963 Development of a strain of spontaneously hypertensive rats. Jpn. Circulation J. 27 282–293

    Article  CAS  Google Scholar 

  • Okamoto K, Yamori Y and Nagaoka A 1974 Establishment of stroke-prone spontaneously hypertensive rats (SHR). Circ. Res. 34/35 143–153

    Google Scholar 

  • Ortiz PA and Garvin JL 2001 Intrarenal transport and vasoactive substances in hypertension. Hypertension 38 621–624

    Article  PubMed  CAS  Google Scholar 

  • Osborn O W, Provo B J 1992 Salt-dependent hypertension in the sinoaortic-denervated rat; Hypertension 19 658–62

    PubMed  CAS  Google Scholar 

  • Papanek PE, Wood CE and Fregly MJ 1991 Role of the sympathetic nervous system in cold-induced hypertension in rats. J. Appl. Physiol. 71 300–306

    PubMed  CAS  Google Scholar 

  • Quiroz Y, Ferrebuz A, Romero F, Vaziri ND and Rodriguez-Iturbe B 2008 Melatonin ameliorates oxidative stress, inflammation, proteinuria, and progression of renal damage in rats with renal mass reduction. Am. J. Physiol.-Renal. 294 F336–F344

    Article  CAS  Google Scholar 

  • Ramchandra R, Barrett C J, Malpas S C 2003 Chronic blockade of nitric oxide does not produce hypertension in baroreceptor denervated rabbits; Hypertension 42 974–77

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro MO, Antunes E, De-Nucci G, Lovisolo SM and Zatz R 1992 Chronic inhibition of nitric oxide synthesis: a new model of arterial hypertension. Hypertension 20 298–303

    PubMed  CAS  Google Scholar 

  • Ryuzaki M, Suzuki H, Kumagai K, Kumagai H, Ichikawa M, Matsumura Y, Saruta T 1991 Role of vasopressin in salt-induced hypertension in baroreceptor-denervated uninephrectomized rabbits; Hypertension 17 1085–91

    PubMed  CAS  Google Scholar 

  • Roberts CK, Vaziri ND, Wang XQ and Barnard RJ 2000 Enhanced NO inactivation an hypertension induced by a high-fat, refined-carbohydrate diet. Hypertension 36 423–429

    PubMed  CAS  Google Scholar 

  • Roberts CK, Vaziri ND, Sindhu RK and Barnard RJ 2003 A high-fat, refined carbohydrate diet affects renal NO synthase protein expression and salt sensitivity. J. Appl. Physiol. 94 941–946

    PubMed  CAS  Google Scholar 

  • Sanders BJ and Lawler JE 1992 The borderline hypertensive rat (BHR) as a model for environmentally-induced hypertension: a review and update. Neurosci. Biobehav. R. 16 207–217

    Article  CAS  Google Scholar 

  • Sharma N, Okere IC, Duda MK, Chess DJ, O’Shea KM and Stanley WC 2007 Potential impact of carbohydrate and fat intake on pathological left ventricular hypertrophy. Cardiovasc. Res. 73 257–268

    Article  PubMed  CAS  Google Scholar 

  • Smith TL and Hutchins PM 1979 Central hemodynamics in the developmental stage of spontaneous hypertension in the unanesthetized rat. Hypertension 1 508–517

    PubMed  CAS  Google Scholar 

  • Steptoe A 1986 Stress mechanisms in hypertension. Postgrad. Med. J. 62 697–699

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Saruta T, Ferrario CM and Brosnihan KB 1987 Characterization of neurohormonal changes following the production of the benign and malignant phases of two-kidney, two-clip Goldblatt hypertension. Jpn. Heart J. 28 413–426

    Article  PubMed  CAS  Google Scholar 

  • Thrasher TN 2002 Unloading arterial baroreceptors causes neurogenic hypertension. Am. J. Physiol.-Reg. I. 282 R1044–R1053

    CAS  Google Scholar 

  • Török J 2008 Participation of nitric oxide in different models of experimental hypertension. Physiol. Res. 57 813–825

    PubMed  Google Scholar 

  • Trindade Jr AS, Moreira ED, Silva GJJ and Krieger EM 2009 Evidence that blood pressure remains under the control of arterial baroreceptors in renal hypertensive rats. Braz. J. Med. Biol. Res. 42 954–57

    Article  Google Scholar 

  • Trippodo NC and Frohlic ED 1981 Similarities of genetic spontaneous hypertension. Circ. Res. 48 309–319

    PubMed  CAS  Google Scholar 

  • Tucker DC and Hunt RA 1993 Effects of long-term air jet noise and dietary sodium chloride in borderline hypertensive rats. Hypertension 22 527–534

    PubMed  CAS  Google Scholar 

  • Yamori Y 1989 Predictive and preventive pathology of cardiovascular diseases. Acta Pathol. Japon. 39 683–705

    CAS  Google Scholar 

  • Yamori Y, Horie R, Handa H, Sato M and Fukase M 1976 Pathogenetic similarity of strokes in stroke-prone spontaneously hypertensive rats and humans. Stroke 7 46–53

    Article  PubMed  CAS  Google Scholar 

  • Zeng J, Zhang Y, Mo J, Su Z and Huang R 1998 Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats. Stroke 29 1708–1713

    Article  PubMed  CAS  Google Scholar 

  • Zicha J and Kunes J 1999 Ontogenetic aspects of hypertension development: analysis in the rat. Physiol. Rev. 79 1227–1282

    PubMed  CAS  Google Scholar 

  • Zimmerman RS and Frohlich ED 1990 Stress and hypertension. J. Hypertens. 8 S103–S107

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Rinaldo Cardoso dos Santos for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo E Silva.

Additional information

Corresponding editor: Ashima Anand

ePublication: 16 August 2011

[Dornas WC and Silva ME 2011 Animal models for the study of arterial hypertension. J. Biosci. 36 731–737] DOI 10.1007/s12038-011-9097-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dornas, W.C., Silva, M.E. Animal models for the study of arterial hypertension. J Biosci 36, 731–737 (2011). https://doi.org/10.1007/s12038-011-9097-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-011-9097-y

Keywords

Navigation