Skip to main content

Advertisement

Log in

Contribution of root to soil respiration and carbon balance in disturbed and undisturbed grassland communities, northeast China

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Changes in the composition of plant species induced by grassland degradation may alter soil respiration rates and decrease carbon sequestration; however, few studies in this area have been conducted. We used net primary productivity (NPP), microbial biomass carbon (MBC), and soil organic carbon (SOC) to examine the changes in soil respiration and carbon balance in two Chinese temperate grassland communities dominated by Leymus chinensis (undisturbed community; Community 1) and Puccinellia tenuiflora (degraded community; Community 2), respectively. Soil respiration varied from 2.5 to 11.9 g CO2 m−2 d−1 and from 1.5 to 9.3 g CO2 m−2 d−1, and the contribution of root respiration to total soil respiration from 38% to 76% and from 25% to 72% in Communities 1 and 2, respectively. During the growing season (May–September), soil respiration, shoot biomass, live root biomass, MBC and SOC in Community 2 decreased by 28%, 39%, 45%, 55% and 29%, respectively, compared to those in Community 1. The considerably lower net ecosystem productivity in Community 2 than in Community 1 (104.56 vs. 224.73 g C m−2 yr−1) suggests that the degradation has significantly decreased carbon sequestration of the ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANPP:

above-ground net primary productivity

BNPP:

below-ground net primary productivity

MBC:

microbial biomass carbon

MR:

microbial respiration

NEP:

net ecosystem production

NPP:

net primary productivity

SOC:

soil organic carbon

References

  • Behera N, Joshi S K and Pati D P 1990 Root contribution to total soil metabolism in a tropical forest soil from Orissa, India; Forest Ecol. Manag. 36 125–134

    Article  Google Scholar 

  • Bolstad P V, Raich P and Lee T 2003 Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra; Tree Physiol. 23 969–976

    Article  Google Scholar 

  • Boone R D, Nadelhoffer K J and Canary J D 1998 Roots exert a strong influence on the temperature sensitivity of soil respiration; Nature (London) 396 570–572

    Article  CAS  Google Scholar 

  • Buyanovsky G A, Kucera C L and Wagner G H 1987 Comparative analyses of carbon dynamics in native and cultivated ecosystems; Ecology 68 2023–2031

    Article  CAS  Google Scholar 

  • Cao G M, Tang Y H, Mo W H, Wang Y S, Li Y N and Zhao X Q 2004 Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau; Soil Biol. Biochem. 36 237–243

    Article  CAS  Google Scholar 

  • Conant R T, Paustian K and Elliott E T 2001 Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl. 11 342–355

    Article  Google Scholar 

  • Cox P M, Betts R A, Jones C D, Spall S A and Totterdell I J 2000 Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model; Nature (London) 408 184–187

    Article  CAS  Google Scholar 

  • Dahlman R C and Kucera C L 1965 Root production and turnover in native prairie; Ecology 46 84–88

    Article  Google Scholar 

  • Dugas W A, Heuer M and Mayeux H S 1999 Carbon dioxide fluxes over bermuda grass, native prairie, and sorghum; Agric. For. Meteorol. 93 121–139

    Article  Google Scholar 

  • Fang C and Moncrieff J B 2001 The dependence of soil CO2 efflux on temperature; Soil Biol. Biochem. 33 155–165

    Article  CAS  Google Scholar 

  • Frank A B 2002 Carbon dioxide fluxes over a grazed prairie and seeded pasture in the Northern Great Plains. Environ. Pollut. 116 397–403

    Article  CAS  Google Scholar 

  • Fu S and Cheng W 2004. Defoliation affects rhizosphere respiration and rhizosphere priming effect on decomposition of soil organic matter under a sunflower species: Helianthus annuus; Plant Soil 263 345–352

    Article  CAS  Google Scholar 

  • Guo L B and Gifford R M 2002 Soil carbon stocks and land use change: a metaanalysis; Global Change Biol. 8 345–360

    Article  Google Scholar 

  • Gupta S R and Singh J S 1981 Soil respiration in a tropical grassland; Soil Biol. Biochem. 13 261–268

    Article  CAS  Google Scholar 

  • Hanson P J, Edwards N T, Garten C T and Andrew J A 2000 Separating root and soil microbial contribution to soil respiration: a review of methods and observations; Biogeochemistry 48 115–146

    Article  CAS  Google Scholar 

  • Hill P W, Marshall C M, Harmens H, Jones D L and Farrar J F 2004 Carbon sequestration: do N inputs and elevated atmospheric CO2 alter soil solution chemistry and respiratory C losses?; Water Air Soil Pollut.: Focus 4 177–186

    Article  CAS  Google Scholar 

  • Iwaki H 1973 Matter production of terrestrial plant communities II, grasslands (Kyoritu Press), pp 32–45 (in Japanese)

  • Jackson R B, Canadell J, Ehleringer J R, Mooney H A, Sala O E and Schulze E D 1996 A global analysis of root distributions for terrestrial biomes; Oecologia 108 389–411

    Article  CAS  Google Scholar 

  • Jia B, Zhou G, Wang F, Wang Y, Yuan W and Zhou L 2006 Partitioning root and microbial contributions to soil respiration in Leymus chinensis populations; Soil Biol. Biochem. (in press)

  • Joergensen R G 1996 The fumigation-extraction method to estimate soil microbial biomass: calibration of the KEC value; Soil Biol. Biochem. 28 25–31

    Article  CAS  Google Scholar 

  • Jones M B and Donnelly A 2004 Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2; New Phytologist 164 423–439

    Article  Google Scholar 

  • Kelliher F M, Ross D J, Law B E, Baldocchi D D and Rodda N J 2004 Limitations to carbon mineralization in litter and mineral soil of young and old ponderosa pine forests; For. Ecol. Manag. 191 201–213

    Article  Google Scholar 

  • Kirschbaum M U F 1995 The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic matter; Soil Biol. Biochem. 27 753–760

    Article  CAS  Google Scholar 

  • Kucera C L and Kirkham D R 1971 Soil respiration studies in tallgrass prairie in Missouri; Ecology 52 912–915

    Article  CAS  Google Scholar 

  • Kuzyakov Y 2006 Sources of CO2 efflux from soil and review of partitioning methods; Soil Biol. Biochem. 38 425–448

    Article  CAS  Google Scholar 

  • Li L H, Han X G, Wang Q B, Chen Q S, Zhang Y, Yang J, Bai W M, Song S H, Xing X R and Zhang S M 2002 [Separating root and soil microbial contributions to total soil respiration in a grazed grassland in the Xilin River Basin;] Acta Phytoecol. Sinica 26 29–32 (in Chinese)

    Google Scholar 

  • Li L H, Li X, Bai W M, Wang Q B, Yan Z D, Yuan Z Y, Dong Y Z. 2004. [Soil carbon budget of a grazed Leymus chinensis steppe community in the Xilin River Basin of Inner Mongolia;] Acta Phytoecol. Sinica 28 312–317 (in Chinese)

    Google Scholar 

  • Li L H, Wag Q B, Bai Y F, Zhou G S and Xing X R 2000 [Soil respiration of a Leymus chinensis grassland stand in the Xilin River Basin as affected by over-grazing and climate;] Acta Phytoecol. Sinica 24 680–686 (in Chinese)

    Google Scholar 

  • Melillo J M P, Steudler A, Aber J D, Newkirk K, Lux H, Bowles F P, Catricala C, Magill A, Ahrens T and Morrisseau S 2002 Soil warming and carbon-cycle feedbacks to the climate system; Science 298 13

    Article  Google Scholar 

  • Mizue O, Koichiro G and Akira S 2000 Contribution of root respiration to total soil respiration in a Japanese cedar (Cryptomeria japonica D. Don) artificial forest; Ecol. Res. 15 323–333

    Article  Google Scholar 

  • Nelson D W and Sommers L E 1982 Total carbon, organic carbon and organic matter; in Methods of soil analysis. Part 2 (eds) A L Page et al (Madison, W I: ASA Publication No. 9) 2nd edition pp 539–577

    Google Scholar 

  • Nina B 2000 Biotic and abiotic factors controlling soil respiration rates in Picea abies stands; Soil Biol. Biochem. 32 1625–1635

    Article  Google Scholar 

  • Norman J M Garica R and Verma S B 1992 Soil surface CO2 fluxes and the carbon budget of a grassland; J. Geophys. Res. 97 18845–18853

    Article  Google Scholar 

  • Oleksyn J, Zytkowiak R, Karolewski P, Reich P B and Tjoelker M G 2000 Genetic and environmental control of seasonal carbohydrate dynamics in trees of diverse Pinus sylvestris populations; Tree Physiol. 20 837–847

    Article  Google Scholar 

  • Raich J W and Potter C S 1995 Global patterns of carbon dioxide emissions from soils; Global Biogeochem. Cycles 9 23–26

    Article  CAS  Google Scholar 

  • Raich J W and Schlesinger W H 1992 The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate; Tellus 44B 81–99

    Article  CAS  Google Scholar 

  • Raich J W and Tufekcioglu A 2000 Vegetation and soil respiration: correlations and controls; Biogeochemistry 48 71–90

    Article  CAS  Google Scholar 

  • Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng Y F, et al 2003 Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices; Global Biogeochem. Cycles 17 1029–1104

    Article  Google Scholar 

  • Rey A, Pegoraro E, Tedeschi V, De Parri, De Parri I, Jarvis P G and Valentini R 2002 Annual variation in soil respiration and its components in a coppice oak forest in Central Italy; Global Change Biol. 8 851–866

    Article  Google Scholar 

  • Rochette P and Flanagan L B 1997 Quantifying rhizosphere respiration in a corn crop under field conditions; Soil Sci. Soc. Am. J. 61 466–474

    Article  CAS  Google Scholar 

  • Rochette P, Gregorich E G and Desjardins R L 1992 Comparison of static and dynamic closed chambers for measurement of soil respiration under field conditions; Can. J. Soil Sci. 72 605–609

    Article  Google Scholar 

  • Rustad L E, Huntington T G. and Boone R D 2000 Controls on soil respiration: implications for climate change; Biogeochemistry 49 1–6

    Article  Google Scholar 

  • Ryan M G and Law B E 2005 Interpreting, measuring, and modeling soil respiration; Biogeochemistry 73 3–27

    Article  Google Scholar 

  • Ryan M G, Binkley D, Fownes J H, Giardina C P and Senock R S 2004 An experimental test of the causes of forest growth decline with stand age; Ecol. Monogr. 74 393–414

    Article  Google Scholar 

  • Ryan M G, Hubbard R M, Pongracic S, Raison R J and McMurtrie R E 1996 Foliage, fine-root, woody-tissue and stand respiration in Pinus radiate in relation to nutrient status; Tree Physiol. 16 333–343

    Article  CAS  Google Scholar 

  • Schlesinger W H and Andrews J A 2000 Soil respiration and the global carbon cycle; Biogeochemistry 48 7–20

    Article  CAS  Google Scholar 

  • Schulze E D, Valentini R and Sanz M J 2002 The long way from Kyoto to Marrakesh: Implications of the Kyoto Protocol negotiations for global ecology; Global Changes Biol. 8 505–518

    Article  Google Scholar 

  • Schuman G E, Janzen H H and Herrick J E 2002 Soil carbon dynamics and potential carbon sequestration by rangelands. Environ. Pollut. 116 391–396

    Article  CAS  Google Scholar 

  • Vance E D, Brookes P C and Jenkinson D S 1987 An extraction method for measuring soil microbial biomass C; Soil Biol. Biochem. 19 703–707

    Article  CAS  Google Scholar 

  • Wang R Z and Earle A R 1997 Effects of grazing on a Leymus chinensis grassland on the Songnen plain of northeastern China; J. Arid Environ. 36 307–318

    Article  Google Scholar 

  • Wang W, Ose K J, Liu J J, Mo W H and Oikawa T 2005 Contribution of root respiration to soil respiration in a C3/C4 mixed grassland; J. Biosci. 30 507–514

    Article  Google Scholar 

  • Xiao X M, Wang Y F, Jiang S, Ojima D S and Bonham C D 1995 Interannual variation in the climate and shoot biomass of Leymus chinensis steppe and Stipa grandis steppe in the Xilin river basin, Inner Mongolia, China; J. Arid Environ. 31 283–299

    Article  Google Scholar 

  • Zan C S, Fyles J W, Girouard P and Samson R A 2001 Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agric. Ecosystem Environ. 86 135–144

    Article  Google Scholar 

  • Zhang Y, Li L H, Wang Y F, Tang F, Cheng Q S, Yang J, Yuan Z Y and Dong Y S 2003 Comparison of soil respiration in two grass-dominated communities in the Xilin River Basin: correlations and controls; Acta Bot. Sin. 45 1024–1029

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Guo, J. & Oikawa, T. Contribution of root to soil respiration and carbon balance in disturbed and undisturbed grassland communities, northeast China. J Biosci 32, 375–384 (2007). https://doi.org/10.1007/s12038-007-0036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0036-x

Keywords

Navigation