Skip to main content

Advertisement

Log in

Alterations in Mouse Brain Lipidome after Disruption of CST Gene: A Lipidomics Study

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

To investigate the effects of a critical enzyme, cerebroside sulfotransferase (CST), involving sulfatide biosynthesis on lipid (particularly sphingolipid) homeostasis, herein, we determined the lipidomes of brain cortex and spinal cord from CST null and heterozygous (CST−/− and CST+/−, respectively) mice in comparison to their wild-type littermates by multi-dimensional mass spectrometry-based shotgun lipidomics. As anticipated, we demonstrated the absence of sulfatide in the tissues from CST−/− mice and found that significant reduction of sulfatide mass levels was also present, but in an age-dependent manner, in CST+/− mice. Unexpectedly, we revealed that the profiles of sulfatide species in CST+/− mice were significantly different from that of littermate controls with an increase in the composition of species containing saturated and hydroxylated fatty acyl chains. Contrary to the changes of sulfatide levels, shotgun lipidomics analysis did not detect significant changes of the mass levels of other lipid classes examined. Taken together, shotgun lipidomics analysis demonstrated anticipated sulfatide mass deficiency in CST defect mouse brain and revealed novel brain lipidome homeostasis in these mice. These results might provide new insights into the role of CST in myelin function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

CBS:

Cerebroside

Cer:

Ceramide

CNS:

Central nervous system

CST:

Cerebroside sulfotransferase

ESI:

Electrospray ionization

Het:

Heterozygous

KO:

Knockout

m:n:

Acyl chain containing m carbons and n double bonds

MALDI-TOF/MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

MDMS-SL:

Multi-dimensional mass spectrometry-based shotgun lipidomics

PC:

Choline glycerophospholipid

PCR:

Polymerase chain reaction

SD:

Statistical deviation

SM:

Sphingomyelin

WT:

Wild type

References

  1. Eckhardt M (2008) The role and metabolism of sulfatide in the nervous system. Mol Neurobiol 37:93–103

    Article  PubMed  CAS  Google Scholar 

  2. Takahashi T, Suzuki T (2012) Role of sulfatide in normal and pathological cells and tissues. J Lipid Res 53:1437–1450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Vos JP, Lopes-Cardozo M, Gadella BM (1994) Metabolic and functional aspects of sulfogalactolipids. Biochim Biophys Acta 1211:125–149

    Article  PubMed  CAS  Google Scholar 

  4. Kolodny EH, Fluharty AL (eds) (1995) Metachromatic leukodystrophy and multiple sulfatase deficiency: sulfatide lipidosis. McGraw-Hill, New York

    Google Scholar 

  5. Eckhardt M, Hedayati KK, Pitsch J, Lullmann-Rauch R, Beck H, Fewou SN, Gieselmann V (2007) Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy. J Neurosci 27:9009–9021

    Article  PubMed  CAS  Google Scholar 

  6. Svennerholm L, Gottfries CG (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J Neurochem 62:1039–1047

    Article  PubMed  CAS  Google Scholar 

  7. Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818

    Article  PubMed  CAS  Google Scholar 

  8. Han X, Cheng H, Fryer JD, Fagan AM, Holtzman DM (2003) Novel role for apolipoprotein E in the central nervous system: modulation of sulfatide content. J Biol Chem 278:8043–8051

    Article  PubMed  CAS  Google Scholar 

  9. Han X (2007) Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stages of Alzheimer’s disease: a tale of shotgun lipidomics. J Neurochem 103(s1):171–179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Honke K, Hirahara Y, Dupree J, Suzuki K, Popko B, Fukushima K, Fukushima J, Nagasawa T, Yoshida N, Wada Y, Taniguchi N (2002) Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci U S A 99:4227–4232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL (2006) Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53:372–381

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki A, Hoshi T, Ishibashi T, Hayashi A, Yamaguchi Y, Baba H (2004) Paranodal axoglial junction is required for the maintenance of the Nav1.6-type sodium channel in the node of Ranvier in the optic nerves but not in peripheral nerve fibers in the sulfatide-deficient mice. Glia 46:274–283

    Article  PubMed  Google Scholar 

  13. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of the cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412

    Article  PubMed  CAS  Google Scholar 

  14. Yang K, Cheng H, Gross RW, Han X (2009) Automated lipid identification and quantification by multi-dimensional mass spectrometry-based shotgun lipidomics. Anal Chem 81:4356–4368

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Cheng H, Guan S, Han X (2006) Abundance of triacylglycerols in ganglia and their depletion in diabetic mice: implications for the role of altered triacylglycerols in diabetic neuropathy. J Neurochem 97:1288–1300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Cheng H, Jiang X, Han X (2007) Alterations in lipid homeostasis of mouse dorsal root ganglia induced by apolipoprotein E deficiency: a shotgun lipidomics study. J Neurochem 101:57–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Jiang X, Cheng H, Yang K, Gross RW, Han X (2007) Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low abundance regime of cellular sphingolipids. Anal Biochem 371:135–145

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Han X, Yang K, Gross RW (2008) Microfluidics-based electrospray ionization enhances intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: development of an automated high throughput platform for shotgun lipidomics. Rapid Commun Mass Spectrom 22:2115–2124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Cheng H, Sun G, Yang K, Gross RW, Han X (2010) Selective desorption/ionization of sulfatides by MALDI-MS facilitated using 9-aminoacridine as matrix. J Lipid Res 51:1599–1609

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Yang K, Han X (2011) Accurate quantification of lipid species by electrospray ionization mass spectrometry— meets a key challenge in lipidomics. Metabolites 1:21–40

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Poduslo SE, Jang Y (1984) Myelin development in infant brain. Neurochem Res 9:1615–1626

    Article  PubMed  CAS  Google Scholar 

  23. Deoni SC, Mercure E, Blasi A, Gasston D, Thomson A, Johnson M, Williams SC, Murphy DG (2011) Mapping infant brain myelination with magnetic resonance imaging. J Neurosci 31:784–791

    Article  PubMed  CAS  Google Scholar 

  24. Ishibashi T, Dupree JL, Ikenaka K, Hirahara Y, Honke K, Peles E, Popko B, Suzuki K, Nishino H, Baba H (2002) A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22:6507–6514

    PubMed  CAS  Google Scholar 

  25. Cheng H, Mancuso DJ, Jiang X, Guan S, Yang J, Yang K, Sun G, Gross RW, Han X (2008) Shotgun lipidomics reveals the temporally dependent, highly diversified cardiolipin profile in the mammalian brain: temporally coordinated postnatal diversification of cardiolipin molecular species with neuronal remodeling. Biochemistry 47:5869–5880

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Cheng H, Wang M, Li J-L, Cairns NJ, Han X (2013) Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: an early event in disease pathogenesis. J Neurochem 127:733–738

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute on Aging Grant R01 AG31675 and intramural institutional research funds. Special thanks are expressed to Dr. Juan Pablo Palavicini for his contribution to genotyping, Ms. Jacina Redden and Nicole Harris for their skillful technical support in the analysis of lipids and/or animal care, and Ms. Imee Tiu for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianlin Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wang, M., Zhou, Y. et al. Alterations in Mouse Brain Lipidome after Disruption of CST Gene: A Lipidomics Study. Mol Neurobiol 50, 88–96 (2014). https://doi.org/10.1007/s12035-013-8626-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8626-0

Keywords

Navigation