Skip to main content

Advertisement

Log in

Generation and Characterization of High Affinity Humanized Fab Against Hepatitis B Surface Antigen

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

5S is a mouse monoclonal IgG1 that binds to the ‘a’ epitope of the Hepatitis B surface antigen (HBsAg) and tested positive in an in vitro test for virus neutralization. We have earlier reported the generation of humanized single chain variable fragment (scFv) from the same. In this article we report the generation of a recombinant Fab molecule by fusing humanized variable domains of 5S with the constant domains of human IgG1. The humanized Fab expressed in E. coli and subsequently purified, retained a high binding affinity (KD = 3.63 nmol/L) to HBsAg and bound to the same epitope of HBsAg as the parent molecule. The humanized Fab also maintained antigen binding in the presence of various destabilizing agents like 3 M NaCl, 30% DMSO, 8 M urea, and extreme pH. This high affinity humanized Fab provides a basis for the development of therapeutic molecules that can be safely utilized for the prophylaxis and treatment for Hepatitis B infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lavanchy, D. (2004). Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. Journal of Viral Hepatitis, 11, 97–107. doi:10.1046/j.1365-2893.2003.00487.x.

    Article  CAS  Google Scholar 

  2. Prince, A. M., Szmuness, W., Woods, K. R., & Grady, G. F. (1971). Antibody against serum-hepatitis antigen. Prevalence and potential use as immune serum globulin in prevention of serum-hepatitis infections. The New England Journal of Medicine, 285, 933–938.

    Article  CAS  Google Scholar 

  3. Karasu, Z., Ozacar, T., Akyildiz, M., Demirbas, T., Arikan, C., Kobat, A., et al. (2004). Low-dose hepatitis B immune globulin and higher-dose lamivudine combination to prevent hepatitis B virus recurrence after liver transplantation. Antiviral Therapy, 9, 921–927.

    CAS  Google Scholar 

  4. Beasley, R. P., Hwang, L. Y., Lee, G. C., Lan, C. C., Roan, C. H., Huang, F. Y., et al. (1983). Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B virus infections with hepatitis B immune globulin and hepatitis B vaccine. Lancet, 2, 1099–1102. doi:10.1016/S0140-6736(83)90624-4.

    Article  CAS  Google Scholar 

  5. Li, X. M., Yang, Y. B., Hou, H. Y., Shi, Z. J., Shen, H. M., Teng, B. Q., et al. (2003). Interruption of HBV intrauterine transmission: A clinical study. World Journal of Gastroenterology, 9, 1501–1503.

    CAS  Google Scholar 

  6. Chisari, F. V., & Ferrari, C. (1995). Hepatitis B virus immunopathology. Springer Seminars in Immunopathology, 17, 261–281. doi:10.1007/BF00196169.

    Article  CAS  Google Scholar 

  7. Magnius, L. O., & Norder, H. (1995). Subtypes, genotypes and molecular epidemiology of the hepatitis B virus as reflected by sequence variability of the S-gene. Intervirology, 38, 24–34.

    CAS  Google Scholar 

  8. Li, Y. W., Lawrie, D. K., Thammana, P., Moore, G. P., & Shearman, C. W. (1990). Construction, expression and characterization of a murine/human chimeric antibody with specificity for hepatitis B surface antigen. Molecular Immunology, 27, 303–311. doi:10.1016/0161-5890(90)90144-O.

    Article  Google Scholar 

  9. Zheng, W., Tan, H., Song, S., Lu, H., Wang, Y., Yu, Y., et al. (2000). The construction and expression of a fusion protein consisting anti-HBsAg antibody fragment Fab and interferon-a in E. coli. World Journal of Gastroenterology, 6(Suppl 3), tk 83a.

    Google Scholar 

  10. Sanchez, L., Ayala, M., Freyre, F., Pedroso, I., Bell, H., Falcon, V., et al. (1999). High cytoplasmic expression in E. coli, purification, and in vitro refolding of a single chain Fv antibody fragment against the hepatitis B surface antigen. Journal of Biotechnology, 72, 13–20. doi:10.1016/S0168-1656(99)00036-X.

    Article  CAS  Google Scholar 

  11. Maeda, F., Nagatsuka, Y., Ihara, S., Aotsuka, S., Ono, Y., Inoko, H., et al. (1999). Bacterial expression of a human recombinant monoclonal antibody fab fragment against hepatitis B surface antigen. Journal of Medical Virology, 58, 338–345. doi:10.1002/(SICI)1096-9071(199908)58:4<338::AID-JMV4>3.0.CO;2-5.

    Article  CAS  Google Scholar 

  12. Bose, B., Chugh, D. A., Kala, M., Acharya, S. K., Khanna, N., & Sinha, S. (2003). Characterization and molecular modeling of a highly stable anti-Hepatitis B surface antigen scFv. Molecular Immunology, 40(9), 617–631. doi:10.1016/j.molimm.2003.07.002.

    Article  CAS  Google Scholar 

  13. Dimmock, N. J. (1984). Mechanisms of neutralization of animal viruses. The Journal of General Virology, 65(Pt 6), 1015–1022. doi:10.1099/0022-1317-65-6-1015.

    Article  Google Scholar 

  14. Burton, D. R., Williamson, R. A., & Parren, P. W. (2000). Antibody and virus: Binding and neutralization. Virology, 270, 1–3. doi:10.1006/viro.2000.0239.

    Article  CAS  Google Scholar 

  15. Cheung, S. C., Dietzschold, B., Koprowski, H., Notkins, A. L., & Rando, R. F. (1992). A recombinant human Fab expressed in Escherichia coli neutralizes rabies virus. Journal of Virology, 66, 6714–6720.

    CAS  Google Scholar 

  16. Barbas, C. F., III, Bjorling, E., Chiodi, F., Dunlop, N., Cababa, D., Jones, T. M., et al. (1992). Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro. Proceedings of the National Academy of Sciences of the United States of America, 89, 9339–9343. doi:10.1073/pnas.89.19.9339.

    Article  CAS  Google Scholar 

  17. Barbas, C. F., III, Crowe, J. E., Jr, Cababa, D., Jones, T. M., Zebedee, S. L., Murphy, B. R., et al. (1992). Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralize infectivity. Proceedings of the National Academy of Sciences of the United States of America, 89, 10164–10168. doi:10.1073/pnas.89.21.10164.

    Article  CAS  Google Scholar 

  18. Lamarre, A., & Talbot, P. J. (1995). Protection from lethal coronavirus infection by immunoglobulin fragments. Journal of Immunology (Baltimore, MD.: 1950), 154, 3975–3984.

    CAS  Google Scholar 

  19. Thullier, P., Lafaye, P., Megret, F., Deubel, V., Jouan, A., & Mazie, J. C. (1999). A recombinant Fab neutralizes dengue virus in vitro. Journal of Biotechnology, 69, 183–190. doi:10.1016/S0168-1656(99)00037-1.

    Article  CAS  Google Scholar 

  20. Tada, H., Yanagida, M., Mishina, J., Fujii, T., Baba, K., Ishikawa, S., et al. (1982). Combined passive and active immunization for preventing perinatal transmission of hepatitis B virus carrier state. Pediatrics, 70, 613–619.

    CAS  Google Scholar 

  21. Skerra, A. (1993). Bacterial expression of immunoglobulin fragments. Current Opinion in Immunology, 5, 256–262. doi:10.1016/0952-7915(93)90014-J.

    Article  CAS  Google Scholar 

  22. Gram, H., Marconi, L. A., Barbas, C. F., III, Collet, T. A., Lerner, R. A., & Kang, A. S. (1992). In vitro selection and affinity maturation of antibodies from a naive combinatorial immunoglobulin library. Proceedings of the National Academy of Sciences of the United States of America, 89, 3576–3580. doi:10.1073/pnas.89.8.3576.

    Article  CAS  Google Scholar 

  23. Rosok, M. J., Yelton, D. E., Harris, L. J., Bajorath, J., Hellstrom, K. E., Hellstrom, I., et al. (1996). A combinatorial library strategy for the rapid humanization of anticarcinoma BR96 Fab. The Journal of Biological Chemistry, 271, 22611–22618. doi:10.1074/jbc.271.37.22611.

    Article  CAS  Google Scholar 

  24. Ames, R. S., Tornetta, M. A., Deen, K., Jones, C. S., Swift, A. M., & Ganguly, S. (1995). Conversion of murine Fabs isolated from a combinatorial phage display library to full length immunoglobulins. Journal of Immunological Methods, 184, 177–186. doi:10.1016/0022-1759(95)00086-P.

    Article  CAS  Google Scholar 

  25. Bender, E., Woof, J. M., Atkin, J. D., Barker, M. D., Bebbington, C. R., & Burton, D. R. (1993). Recombinant human antibodies: Linkage of an Fab fragment from a combinatorial library to an Fc fragment for expression in mammalian cell culture. Human Antibodies and Hybridomas, 4, 74–79.

    CAS  Google Scholar 

  26. Shearman, C. W., Pollock, D., White, G., Hehir, K., Moore, G. P., Kanzy, E. J., et al. (1991). Construction, expression and characterization of humanized antibodies directed against the human alpha/beta T cell receptor. Journal of Immunology (Baltimore, MD.: 1950), 147(12), 4366–4373.

    CAS  Google Scholar 

  27. Couto, J. R., Blank, E. W., Peterson, J. A., & Ceriani, R. L. (1995). Anti-BA46 monoclonal antibody Mc3: Humanization using a novel positional consensus and in vivo and in vitro characterization. Cancer Research, 55(8), 1717–1722.

    CAS  Google Scholar 

  28. Couto, J. R., Christian, R. B., Peterson, J. A., & Ceriani, R. L. (1995). Designing human consensus antibodies with minimal positional templates. Cancer Research, 55(23, Suppl), 5973s–5977s.

    CAS  Google Scholar 

  29. Tiwari, A., Khanna, N., Acharya, S. K., & Sinha, S. (2009). Humanization of high affinity anti-HBs antibody by using human consensus sequence and modification of selected minimal positional template and packing residues. Vaccine, 27, 2356–2366. doi:10.1016/j.vaccine.2009.02.019.

    Article  CAS  Google Scholar 

  30. Barbas, C. F., III, Kang, A. S., Lerner, R. A., & Benkovic, S. J. (1991). Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proceedings of the National Academy of Sciences of the United States of America, 88, 7978–7982. doi:10.1073/pnas.88.18.7978.

    Article  CAS  Google Scholar 

  31. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  32. Friguet, B., Chaffotte, A. F., Djavadi-Ohaniance, L., & Goldberg, M. E. (1985). Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. Journal of Immunological Methods, 77, 305–319. doi:10.1016/0022-1759(85)90044-4.

    Article  CAS  Google Scholar 

  33. Schroff, R. W., Foon, K. A., Beatty, S. M., Oldham, R. K., & Morgan, A. C., Jr. (1985). Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Research, 45, 879–885.

    CAS  Google Scholar 

  34. Shawler, D. L., Bartholomew, R. M., Smith, L. M., & Dillman, R. O. (1985). Human immune response to multiple injections of murine monoclonal IgG. Journal of Immunology (Baltimore, MD.: 1950), 135, 1530–1535.

    CAS  Google Scholar 

  35. Sakahara, H., Reynolds, J. C., Carrasquillo, J. A., Lora, M. E., Maloney, P. J., Lotze, M. T., et al. (1989). In vitro complex formation and biodistribution of mouse antitumor monoclonal antibody in cancer patients. Journal of Nuclear Medicine, 30, 1311–1317.

    CAS  Google Scholar 

  36. Rettenbacher, L., & Galvan, G. (1994). Anaphylactic shock after repeated injection of 99mTc-labeled CEA antibody. Nuclear-Medizin, 33, 127–128.

    CAS  Google Scholar 

  37. Jankowitz, R., Joyce, J., & Jacobs, S. A. (2008). Anaphylaxis after administration of ibritumomab tiuxetan for follicular non-hodgkin lymphoma. Clinical Nuclear Medicine, 33(2), 94–96.

    Article  Google Scholar 

  38. Reist, C. J., Bigner, D. D., & Zalutsky, M. R. (1998). Human IgG2 constant region enhances in vivo stability of anti-tenascin antibody 81C6 compared with its murine parent. Clinical Cancer Research, 4, 2495–2502.

    CAS  Google Scholar 

  39. Colcher, D., Milenic, D., Roselli, M., Raubitschek, A., Yarranton, G., King, D., et al. (1989). Characterization and biodistribution of recombinant and recombinant/chimeric constructs of monoclonal antibody B72.3. Cancer Research, 49, 1738–1745.

    CAS  Google Scholar 

  40. Yata, Y., Otsuji, E., Okamoto, K., Tsuruta, H., Kobayashi, S., Toma, A., et al. (2003). Decreased production of anti-mouse antibody after administration of human/mouse chimeric monoclonal antibody-neocarzinostatin conjugate to human. Hepato-Gastroenterology, 50, 80–84.

    CAS  Google Scholar 

  41. Clark, M. R. (1997). IgG effector mechanisms. Chemical Immunology, 65, 88–110.

    CAS  Google Scholar 

  42. Steplewski, Z., Sun, L. K., Shearman, C. W., Ghrayeb, J., Daddona, P., & Koprowski, H. (1988). Biological activity of human-mouse IgG1, IgG2, IgG3, and IgG4 chimeric monoclonal antibodies with antitumor specificity. Proceedings of the National Academy of Sciences of the United States of America, 85, 4852–4856. doi:10.1073/pnas.85.13.4852.

    Article  CAS  Google Scholar 

  43. Rath, S., & Devey, M. E. (1988). IgG subclass composition of antibodies to HBsAg in circulating immune complexes from patients with hepatitis B virus infections. Clinical and Experimental Immunology, 72, 164–167.

    CAS  Google Scholar 

  44. Gregorek, H., Madalinski, K., Woynarowski, M., Mikolajewicz, J., Syczewska, M., & Socha, J. (2000). The IgG subclass profile of anti-HBs response in vaccinated children and children seroconverted after natural infection. Vaccine, 18, 1210–1217. doi:10.1016/S0264-410X(99)00394-1.

    Article  CAS  Google Scholar 

  45. Honorati, M. C., Borzi, R. M., Dolzani, P., Toneguzzi, S., & Facchini, A. (1997). Distribution of IgG subclasses after anti-hepatitis B virus immunization with a recombinant vaccine. International Journal of Clinical and Laboratory Research, 27, 202–206. doi:10.1007/BF02912459.

    Article  CAS  Google Scholar 

  46. Cooper, L. J., Robertson, D., Granzow, R., & Greenspan, N. S. (1994). Variable domain-identical antibodies exhibit IgG subclass-related differences in affinity and kinetic constants as determined by surface plasmon resonance. Molecular Immunology, 31, 577–584. doi:10.1016/0161-5890(94)90165-1.

    Article  CAS  Google Scholar 

  47. Pritsch, O., Hudry-Clergeon, G., Buckle, M., Petillot, Y., Bouvet, J. P., Gagnon, J., et al. (1996). Can immunoglobulin C(H)1 constant region domain modulate antigen binding affinity of antibodies? The Journal of Clinical Investigation, 98, 2235–2243. doi:10.1172/JCI119033.

    Article  CAS  Google Scholar 

  48. Torres, M., & Casadevall, A. (2008). The immunoglobulin constant region contributes to affinity and specificity. Trends in Immunology, 29(2), 91–97. Feb.

    Article  CAS  Google Scholar 

  49. Torres, M., Fernández-Fuentes, N., Fiser, A., & Casadevall, A. (2007). The immunoglobulin heavy chain constant region affects kinetic and thermodynamic parameters of antibody variable region interactions with antigen. Journal of Biological Chemistry, 282(18), 13917–13927.

    Article  CAS  Google Scholar 

  50. Sanna, P. P., Samson, M. E., Moon, J. S., Rozenshteyn, R., De Logu, A., Williamson, R. A., et al. (1999). pFab-CMV, a single vector system for the rapid conversion of recombinant Fabs into whole IgG1 antibodies. Immunotechnology, 4, 185–188. doi:10.1016/S1380-2933(98)00022-0.

    Article  CAS  Google Scholar 

  51. Strohal, R., Kroemer, G., Wick, G., & Kofler, R. (1987). Complete variable region sequence of a nonfunctionally rearranged kappa light chain transcribed in the nonsecretor P3-X63-Ag8.653 myeloma cell line. Nucleic Acids Research, 15, 2771. doi:10.1093/nar/15.6.2771.

    Article  CAS  Google Scholar 

  52. Duan, L., & Pomerantz, R. J. (1994). Elimination of endogenous aberrant kappa chain transcripts from sp2/0-derived hybridoma cells by specific ribozyme cleavage: Utility in genetic therapy of HIV-1 infections. Nucleic Acids Research, 22, 5433–5438. doi:10.1093/nar/22.24.5433.

    Article  CAS  Google Scholar 

  53. Raffai, R., Vukmirica, J., Weisgraber, K. H., Rassart, E., Innerarity, T. L., & Milne, R. (1999). Bacterial expression and purification of the Fab fragment of a monoclonal antibody specific for the low-density lipoprotein receptor-binding site of human apolipoprotein E. Protein Expression and Purification, 16, 84–90. doi:10.1006/prep.1999.1031.

    Article  CAS  Google Scholar 

  54. Stemmer, W. P., Morris, S. K., Kautzer, C. R., & Wilson, B. S. (1993). Increased antibody expression from Escherichia coli through wobble-base library mutagenesis by enzymatic inverse PCR. Gene, 123, 1–7. doi:10.1016/0378-1119(93)90531-7.

    Article  CAS  Google Scholar 

  55. Humphreys, D. P., Carrington, B., Bowering, L. C., Ganesh, R., Sehdev, M., Smith, B. J., et al. (2002). A plasmid system for optimization of Fab′ production in Escherichia coli: Importance of balance of heavy chain and light chain synthesis. Protein Expression and Purification, 26, 309–320. doi:10.1016/S1046-5928(02)00543-0.

    Article  CAS  Google Scholar 

  56. Andersson, S. G., & Kurland, C. G. (1990). Codon preferences in free-living microorganisms. Microbiological Reviews, 54, 198–210.

    CAS  Google Scholar 

  57. Jacques, N., & Dreyfus, M. (1990). Translation initiation in Escherichia coli: Old and new questions. Molecular Microbiology, 4, 1063–1067. doi:10.1111/j.1365-2958.1990.tb00679.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded from research grants from the Department of Biotechnology, India to Subrata Sinha. Ashutosh Tiwari was recipient of junior and senior research fellowship from Council of Scientific and Industrial Research and Indian Council of Medical Research; India. We are thankful to Dr. Dennis R. Burton and The Scripps Research Institute, La Jolla, USA for providing the vector pCOM3H. We are thankful to Mathura Prasad, Satish and Jyoti for their technical and secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, A., Dutta, D., Khanna, N. et al. Generation and Characterization of High Affinity Humanized Fab Against Hepatitis B Surface Antigen. Mol Biotechnol 43, 29–40 (2009). https://doi.org/10.1007/s12033-009-9165-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9165-9

Keywords

Navigation