Skip to main content

Advertisement

Log in

Biobanking

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Biobanks, more formally known as biological resource centers (BRCs), form an “unsung” yet critical component of the infrastructures for scientific research, industry and conservation, without which much of the current scientific activity involving microbial cultures and cell-lines would be effectively impossible. BRCs are de facto depositories of “biological standards” holding taxonomic and other reference strains on which much of the associated published science and industrial standards are built and upon which some significant international commercial and ethical issues rely. The establishment and maintenance of BRCs is a knowledge- and skill-rich activity that in particular requires careful attention to the implementation of reliable preservation technologies and appropriate quality assurance to ensure that recovered cultures and other biological materials perform in the same way as the originally isolated culture or material. There are many types of BRC, which vary both in the kinds of material they hold and in their functional role. All BRCs are expected to provide materials and information of an appropriate quality for their intended use and work to standards relevant to those applications. There are important industrial, biomedical, and conservation issues that can only be addressed through effective and efficient operation of BRCs in the long term. This requires a high degree of expertise in the maintenance and management of collections of biological materials at ultra-low temperatures, or as freeze-dried material, to secure their long-term integrity and relevance for future research, development, and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Müller, J., Friedl, T., Hepperle, D., Lorenz, M., & Day, J. G. (2005). Distinction of isolates among multiple strains of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing conspecificity with amplified fragment length polymorphism and ITS RDNA sequences. Journal of Phycology, 41, 1236–1247. doi:10.1111/j.1529-8817.2005.00134.x.

    Article  CAS  Google Scholar 

  2. Polge, C., Smith, A. U., & Parkes, S. (1949). Revival of spermatozoa after dehydration at low temperatures. Nature, 164, 166. doi:10.1038/164666a0.

    Article  Google Scholar 

  3. Sakai, A. (1966). Survival of plant tissues at super-low temperatures IV, cell survival with rapid cooling and rewarming. Plant Physiology, 41, 1050–1054.

    Article  CAS  Google Scholar 

  4. Day, J. G., & Stacey, G. N. (2007). Cryopreservation and freeze-drying protocols. Totowa, NJ: Humana Press.

    Google Scholar 

  5. Mutetwa, S. M., & James, E. R. (1984). Cryopreservation of Plasmodium chabaudi. II. Cooling and warming rates. Cryobiology, 21, 552–558. doi:10.1016/0011-2240(84)90054-3.

    Article  CAS  Google Scholar 

  6. Wood, C. B., Pritchard, H. W., & Miller, A. P. (2000). Simultaneous preservation of orchid seed and its fungal symbiont using encapsulation-dehydration is dependent on moisture content and storage temperature. CryoLetters, 21, 125–136.

    Google Scholar 

  7. Stacey, G. N., Byrne, E., & Hawkins, J. R. (2007). DNA fingerprinting and characterization of animal cell lines. In R. Poertner (Ed.), Animal cell biotechnology: Methods and protocols (2nd edn., pp. 123–145). Totowa, NJ: Humana Press.

    Google Scholar 

  8. Hebert, P. D., Cywinska, A., Ball, S. L., & de Waard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings. Biological Sciences, 270, 313–321. doi:10.1098/rspb.2002.2218.

    Article  CAS  Google Scholar 

  9. Bingen, E. H., Denamur, E., & Elion, J. (1994). Use of ribotyping in epidemiological surveillance of nosocomial outbreaks. Clinical Microbiology Reviews, 7, 311–327.

    CAS  Google Scholar 

  10. Stacey, G. N. (2002). Standardisation of cell lines. Developments in Biologicals, 111, 259–272.

    CAS  Google Scholar 

  11. Hay, R. J. (1988). The seed stock concept and quality control for cell lines. Analytical Biochemistry, 171, 225–237. doi:10.1016/0003-2697(88)90480-0.

    Article  CAS  Google Scholar 

  12. Stacey, G. N. (2004). Validation of cell culture media components. Human Fertility, 7, 113–118.

    Google Scholar 

  13. Stacey, A., & Stacey, G. N. (2000). Routine quality control testing for cell cultures. In D. Kinchington & R. F. Schinazi (Eds.), Methods in molecular medicine, vol. 24: Antiviral methods and protocols (pp. 27–40). Totowa, NJ: Humana Press.

    Google Scholar 

  14. McLean, C. (2000). Contamination detection in animal cell culture. In R. Spier (Ed.), Encyclopedia of cell technology (pp. 586–609). New York: Wiley Interscience.

    Google Scholar 

  15. Harding, K. (2004). Genetic integrity of cryopreserved plant cells: A review. CryoLetters, 25, 3–22.

    Google Scholar 

  16. Stacey, G. N., Benson, E. E., & Lynch, P. T. (1999). Plant Gene-banking: Agriculture, biotechnology and conservation. Agro Food Industry Hi-Tech, 10, 9–14.

    Google Scholar 

  17. WFCC. (1999). World Federation for Culture Collections guidelines for the establishment and operation of collections of cultures of microorganisms, 2nd edn. (ISBN 92-9109-043-3 available from Dr. A. Doyle, Secretary WFCC, The Wellcome Trust, 183 Euston Road, London NW1 2BE, UK).

  18. Coecke, S., Balls, M., Bowe, G., Davis, J., Gstraunthaler, G., Hartung, T., et al. (2005). Guidance on good cell culture practice. A report of the second ECVAM task Force on Good Cell Culture Practice. Alternatives to Laboratory Animals, 33, 1–27.

    Google Scholar 

  19. Budapest Treaty Regulations. (1977). Budapest Treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure. 277 (E), World Intellectual Property Organization, Geneva.

  20. European Directive 2004/23/CE of the European parliament and the council of March 31st, relating to the establishment of quality and safety norms to donate, to obtain, to assess, to process, to preserve, to store and to distribute cells and human tissues.

  21. World Health Organization Expert Committee on Biological Standardization and Executive Board (ECBS). (2005). Requirements for the use of animal cells as in vitro substrates for the production of biologicals. Technical Report Series 927, World Health Organization, Geneva.

  22. ICH. (1997). Human Medicines Evaluation Unit: ICH Topic Q 5 D – Quality of biotechnological products: Derivation and characterization of cell substrates used for production of biotechnological/biological products. European Agency for the Evaluation of Medicinal Products, ICH Technical Co-ordination, London. http://www.eudra.org/emea.html.

  23. OECD. (2004). Draft advisory document of the OECD working group on the application of GLP principles to in vitro studies. OECD, Paris.

  24. Bridge, P. D., Roberts, P. J., Spooner, B. M., & Panchal, G. (2003). On the reliability of published DNA sequences. The New Phytologist, 160, 43–48. doi:10.1046/j.1469-8137.2003.00861.x.

    Article  CAS  Google Scholar 

  25. Tindall, B. J. (2007). Vacuum drying and cryopreservation of prokaryotes. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 73–98). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  26. Watanabe, M. M., Nozaki, H., Kasaki, S., Sano, N., Kato, N., Omori, Y., et al. (2005). Threatened state of the Charales in the lakes of Japan. In F. Kasai, K. Kaya, & M. M. Watanabe (Eds.), Algal culture collections and the environment (pp. 217–236). Kanagawa, Japan: Tokai Univ. Press.

    Google Scholar 

  27. Benson, E. E., Harding, K., & Johnston, J. W. (2007). Cryopreservation of shoot tips and meristems. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 163–184). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  28. Pritchard, H. W. (2007). Cryopreservation of desiccation-tolerant seeds. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 185–202). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  29. Curry, M. R. (2007). Cryopreservation of mammalian semen. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 303–312). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  30. Fuller, B. J., & Paynter, S. J. (2007). Cryopreservation of mammalian embryos. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 325–339). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  31. Stacey, G. N. (2004). Cell line banks in biotechnology and regulatory affairs. In B. Fuller, E. E. Benson, & N. Lane (Eds.), Life in the frozen state (pp. 437–452). Boca Ranton: CRC Press LLC.

    Google Scholar 

  32. Lorenz, M., Friedl, T., & Day, J. G. (2004). Perpetual maintenance of actively metabolizing microalgal cultures. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 145–156). New York: Academic Press.

    Google Scholar 

  33. Smith, D., & Onions, A. H. S. (1994). The preservation and maintenance of living fungi (2nd edn.). Wallingford, UK: CAB International.

    Google Scholar 

  34. Adams, G. (2007). The principles of freeze-drying. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 1–14). Totowa, NJ: Humana Press.

    Google Scholar 

  35. Ryan, M. J., & Smith, D. (2007). Cryopreservation and freeze-drying of fungi employing centrifugal and shelf freeze-drying. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 127–140). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  36. Adams, G. D. J. (1995). Freeze-drying—The integrated approach (pp. 177–180). Pharmaceutical Manufacturing International.

  37. Fleck, R. A., Day, J. G., Clarke, K. J., & Benson, E. E. (1999). Elucidation of the metabolic and structural basis for the cryopreservation recalcitrance of Vaucheria sessilis. CryoLetters, 20, 271–282.

    Google Scholar 

  38. Farrant, J. (1980). General observations on cell preservation. In M. Ashwood-Smith & J. Farrant (Eds.), Low temperature preservation in medicine and biology (pp. 1–18). Tonbridge Wells, UK: Pitman Medical.

    Google Scholar 

  39. Ashwood-Smith, M., & Farrant, J. (1980). Low temperature preservation in medicine and biology. Tonbridge Wells, UK: Pitman Medical.

    Google Scholar 

  40. Arakawa, T., Carpenter, F., Kita, Y. A., & Crowe, I. H. (1990). The basis for toxicity of certain cryoprotectants: a hypothesis. Cryobiology, 27, 401–415. doi:10.1016/0011-2240(90)90017-X.

    Article  CAS  Google Scholar 

  41. Taylor, M. J. (1981). The meaning of pH at low temperature. Cryobiology, 2, 231–239.

    Google Scholar 

  42. Greiff, D., & Rightsel, W. A. (1965). Stabilities of suspensions of virus after vacuum sublimation and storage. Cryobiology, 3, 435–443.

    Google Scholar 

  43. Greiff, D. (1971). Protein structure and freeze-drying: The effects of residual moisture and gases. Cryobiology, 8, 145–152. doi:10.1016/0011-2240(71)90022-8.

    Article  CAS  Google Scholar 

  44. Bellissent-Funel, M., & Teixera, Q. (1999). Structural and dynamic properties of bulk and confined water additives. In L. Rey & J. C. May (Eds.), Freeze-drying/Lyophilization of pharmaceutical and biological products (pp. 53–77). New York: Marcel Dekker.

    Google Scholar 

  45. Adams, G. D. J. (1990). Residual moisture and the freeze-dried product. In Lyophilization technology handbook (pp. 581–604). The Center for Professional Advancement, Academic Center, PO Box H, East Brunswick, NJ.

  46. Cox, C. S. (1991). Roles of maillard reactions in disease. London: HMSO Publications.

    Google Scholar 

  47. Cowdery, S., Frey, M., Orlowski, S., & Gray, A. (1977). Stability characteristics of freeze-dried human live virus vaccines. In International symposium on freeze-drying of biological products, vol. 36: Developments in biological standards (pp. 297–303). Karger, Basel.

  48. Walters, C., Wheeler, L., & Stanwood, P. C. (2004). Longevity of cryogenically stored seeds. Cryobiology, 48, 229–244. doi:10.1016/j.cryobiol.2004.01.007.

    Article  Google Scholar 

  49. Dando, T. R., & Bousfield, I. J. (1991). Maintenance of industrial and marine bacteria. In B. E. Kirsop & A. Doyle (Eds.), Maintenance of microorganisms and cell cultures (2nd edn., pp. 57–64). London: Academic Press.

    Google Scholar 

  50. Jones, D., Pell, P. A., & Sneath, P. H. A. (1991). Maintenance of bacteria on glass beads at −60°C to −76°C. In B. E. Kirsop & A. Doyle (Eds.), Maintenance of microorganisms and cell cultures (2nd edn., pp. 45–50). London: Academic Press.

    Google Scholar 

  51. Brown, S., & Day, J. G. (1993). An improved method for the long-term preservation of Naegleria gruberi. CryoLetters, 14, 347–352.

    Google Scholar 

  52. Pegg, D. E. (2007). Principles of cryopreservation. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 39–58). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  53. Mazur, P. (2004). Principles of cryobiology. In B. Fuller, N. Lane, & E. E. Benson (Eds.), Life in the frozen state (pp. 3–66). Florida: CRC Press.

    Google Scholar 

  54. Meryman, H. I., Williams, R. J., St, J., & Douglas, M. (1977). Freezing injury from solution effects and its prevention by natural or artificial cryoprotection. Cryobiology, 14, 287–302. doi:10.1016/0011-2240(77)90177-8.

    Article  CAS  Google Scholar 

  55. Morris, G. J., & Canning, C. E. (1978). The cryopreservation of Euglena gracilis. Journal of General Microbiology, 108, 27–31.

    CAS  Google Scholar 

  56. Benson, E. E. (2004). Cryoconserving algal and plant diversity: Historical perspectives and future challenges. In B. Fuller, N. Lane, & E. E. Benson (Eds.), Life in the frozen state (pp. 299–328). Florida: CRC Press.

    Google Scholar 

  57. Sakai, A. (2004). Plant cryopreservation. In B. Fuller, N. Lane, & E. E. Benson (Eds.), Life in the frozen state (pp. 329–346). Florida: CRC Press LLC.

    Google Scholar 

  58. Fabre, J., & Dereuddre, J. (1990). Encapsulation-dehydration: A new approach to cryopreservation of potato shoot-tips. CryoLetters, 11, 413–426.

    Google Scholar 

  59. Rudge, R. H. (1991). Maintenance of bacteria by freeze-drying. In B. E. Kirsop & A. Doyle (Eds.), Maintenance of microorganisms and cell cultures (2nd edn., pp. 31–44). London: Academic Press.

    Google Scholar 

  60. Hubalek, Z., & Kockova-Kratochvilova, A. (1982). Long term preservation of yeast cultures in liquid nitrogen. Folia Microbiologica, 27, 242–244. doi:10.1007/BF02877123.

    Article  CAS  Google Scholar 

  61. Bond, C. (2007). Freeze-drying yeast cultures. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 99–108). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  62. Bond, C. (2007). Cryopreservation of yeast cultures. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 109–118). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  63. Day, J. G., Watanabe, M. M., Morris, G. J., Fleck, R. A., & McLellan, M. R. (1997). Long-term viability of preserved eukaryotic algae. Journal of Applied Phycology, 9, 121–127. doi:10.1023/A:1007991507314.

    Article  Google Scholar 

  64. Broxmeyer, H. E., Srour, E. F., Hangoc, G., Cooper, S., Anderson, S. A., & Bodine, D. M. (2003). High-efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proceedings of the National Academy of Sciences of the United States of America, 100, 5645–5650. doi:10.1073/pnas.0237086100.

    Article  CAS  Google Scholar 

  65. Sputtek, A. (2007). Cryopreservation of red blood cells and platelets. In J. G. Day & G. N. Stacey (Eds.), Methods in molecular biology, vol. 368: Cryopreservation and freeze-drying protocols (pp. 283–302). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  66. Spurr, E. E., Wiggins, N. E., Marsden, K. A., Lowenthal, R. M., & Ragg, S. J. (2002). Cryopreserved human haematopoietic stem cells retain engraftment potential after extended (5–14 years) cryostorage. Cryobiology, 44, 210–217. doi:10.1016/S0011-2240(02)00027-5.

    Article  Google Scholar 

  67. Leibo, S. P., Semple, M. E., & Kroetsch, T. G. (1994). In-vitro fertilization of oocytes by 37-year-old cryopreserved bovine spermatozoa. Theriogenology, 42, 1257–1262. doi:10.1016/0093-691X(94)90245-E.

    Article  Google Scholar 

  68. Rofeim, O., & Gilbert, B. R. (2005). Long-term cryopreservation of human spermatozoa. Fertility and Sterility, 84, 536–537. doi:10.1016/j.fertnstert.2005.02.035.

    Article  Google Scholar 

  69. Horne, G., Atkinson, A. D., Pease, E. H. E., Logue, J. P., Brison, D. R., & Lieberman, B. A. (2004). Live birth with semen cryopreserved for 21 years prior to cancer treatment. Human Reproduction (Oxford, England), 19, 1448–1449. doi:10.1093/humrep/deh249.

    Article  CAS  Google Scholar 

  70. Chern, H. T., & Scharp, D. W. (1995). Successful long-term cryopreservation of highly purified canine islets. European Surgical Research, 27, 167–175. doi:10.1159/000129396.

    Article  CAS  Google Scholar 

  71. Fogarty, N. M., Maxwell, W. M. C., Eppleston, J., & Evans, G. (2000). The viability of transferred sheep embryos after long-term cryopreservation. Reproduction, Fertility, and Development, 12, 31–37. doi:10.1071/RD00020.

    Article  CAS  Google Scholar 

  72. Tedder, R. S., Zuckerman, M. A., Goldstone, A. H., et al. (1995). Hepatitis B transmission from a contaminated cryopreservation tank. Lancet, 346, 137–140. doi:10.1016/S0140-6736(95)91207-X.

    Article  CAS  Google Scholar 

  73. Fountain, D., Ralston, M., Higgins, N., Gorlin, J. B., Uhl, L., Wheeler, C., et al. (1997). Liquid nitrogen freezers: A potential source of microbial contamination of hematopoietic stem cell components. Transfusion, 37, 585–591. doi:10.1046/j.1537-2995.1997.37697335152.x.

    Article  CAS  Google Scholar 

  74. Day, J. G., & Brand, J. J. (2005). Cryopreservation methods for maintaining cultures. In R. A. Andersen (Ed.), Algal culturing techniques (pp. 165–187). New York: Academic Press.

    Chapter  Google Scholar 

  75. Letur-Könirsch, H., Collin, G., Devaux, A., Madelenat, P., Brun-Vezinet, F., Feldmann, G., et al. (2003). Safety of cryopreservation straws for human gametes or embryos: A study with human immunodeficiency virus-1 under cryopreservation conditions. Human Reproduction (Oxford, England), 18, 140–144. doi:10.1093/humrep/deg001.

    Article  Google Scholar 

  76. Maertens, A., Bourlet, T., Plotton, N., Pozzetto, B., & Levy, R. (2004). Validation of safety procedures for the cryopreservation of semen contaminated with hepatitis C virus in assisted reproductive technology. Human Reproduction (Oxford, England), 19, 1554–1557. doi:10.1093/humrep/deh275.

    Article  CAS  Google Scholar 

  77. Glenister, P. H., Whittingham, D. G., & Lyon, M. F. (1984). Further studies on the effect of radiation during storage of frozen 8-cell mouse embryos at −196 degrees C. Journal of Reproduction and Fertility, 70, 229–234.

    Article  CAS  Google Scholar 

  78. Stacey, G. N. (1999). Control of contamination in cell and tissue banks. CryoLetters, 20, 141–146.

    Google Scholar 

  79. Streit, S., Bock, F., Pirk, C. W., & Tautz, J. (2003). Automatic life-long monitoring of individual insect behaviour now possible. Zoology (Jena), 106, 169–171.

    Google Scholar 

  80. Kirkwood, T. B. L. (1984). Design and analysis of accelerated degradation tests for the stability of biological standards, III. Principles of design. Journal of Biological Standardization, 12, 215–224. doi:10.1016/S0092-1157(84)80056-6.

    Article  CAS  Google Scholar 

  81. Ratajczak, M. Z., Kegnow, D. A., Kuczynski, W. I., Ratajczak, J., & Gewitz, A. M. (1994). The storage of cells from different tumor lines in a mechanical freezer at −80 degrees C. Comparison to cryopreservation in liquid nitrogen. Materia Medica Polona. Polish Journal of Medicine and Pharmacy, 26, 69–72.

    CAS  Google Scholar 

  82. Pearson, B. M., Jackman, P. J. H., Painting, K. A., & Morris, G. J. (1990). Stability of genetically manipulated yeasts under different cryopreservation regimes. CryoLetters, 11, 205–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John G. Day.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, J.G., Stacey, G.N. Biobanking. Mol Biotechnol 40, 202–213 (2008). https://doi.org/10.1007/s12033-008-9099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9099-7

Keywords

Navigation