Skip to main content
Log in

Cells by Design: A Mini-Review of Targeting Cell Engineering Using DNA Microarrays

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recent studies have demonstrated the utility of DNA microarray technology in engineering cellular properties. For instance, cellular adhesion, the necessity of cells to attach to a surface in order to to proliferate, was examined by comparing two distinct HeLa cell lines. Two genes, one encoding a type II membrane glycosylating sialyltransferase (siat7e) and the other encoding a secreted glycoprotein (lama4), were found to influence adhesion. The expression of siat7e correlated with reduced adhesion, whereas expression of lama4 correlated with increased adhesion, as shown by various assays. In a separate example, a gene encoding a mitochondrial assembly protein (cox15) and a gene encoding a kinase (cdkl3), were found to influence cellular growth. Enhanced expression of either gene resulted in slightly higher specific growth rates and higher maximum cell densities for HeLa, HEK-293, and CHO cell lines. Another investigated property was the adaptation of HEK-293 cells to serum-free media. The genes egr1 and gas6, both with anti-apoptotic properties, were identified as potentially improving adaptability by impacting viability at low serum levels. In trying to control apoptosis, researchers found that by altering the expression levels of four genes faim, fadd, alg-2, and requiem, apoptotic response could be altered. In the present work, these and related studies in microorganisms (prokaryote and eukaryote) are examined in greater detail focusing on the approach of using DNA microarrays to direct cellular behavior by targeting select genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jaluria, P., Konstantopoulos, K., Betenbaugh, M., & Shiloach, J. (2007). A perspective on microarrays: Current applications, pitfalls, and potential uses. Microbial Cell Factories, 6, 4.

    Article  PubMed  Google Scholar 

  2. Gill, R. T. (2003). Enabling inverse metabolic engineering through genomics. Current Opinion in Biotechnology, 14, 484–490.

    Article  PubMed  CAS  Google Scholar 

  3. Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470.

    Article  PubMed  CAS  Google Scholar 

  4. Griffin, T. J., Seth, G., Xie, H., Bandhakavi, S., & Hu, W. S. (2007). Advancing mammalian cell culture engineering using genome-scale technologies. Trends in Biotechnology, 25, 401–408.

    Article  PubMed  CAS  Google Scholar 

  5. Chang, T. M., & Prakash, S. (2001). Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms. Molecular Biotechnology, 17, 249–260.

    Article  PubMed  CAS  Google Scholar 

  6. Jaluria, P., Betenbaugh, M., Konstantopoulos, K., Frank, B., & Shiloach, J. (2007). Application of microarrays to identify and characterize genes involved in attachment dependence in HeLa cells. Metabolic Engineering, 9, 241–251.

    Article  PubMed  CAS  Google Scholar 

  7. Majors, B. S., Betenbaugh, M. J., & Chiang, G. G. (2007). Links between metabolism and apoptosis in mammalian cells: Applications for anti-apoptosis engineering. Metabolic Engineering, 9, 317–326.

    Article  PubMed  CAS  Google Scholar 

  8. Khoo, S. H., & Al-Rubeai, M. (2007). Metabolomics as a complementary tool in cell culture. Biotechnology and Applied Biochemistry, 47, 71–84.

    Article  PubMed  CAS  Google Scholar 

  9. Korke, R., Rink, A., Seow, T. K., Chung, M. C., Beattie, C. W., & Hu, W. S. (2002). Genomic and proteomic perspectives in cell culture engineering. Journal of Biotechnology, 94, 73–92.

    Article  PubMed  CAS  Google Scholar 

  10. Lum, A. M., Huang, J., Hutchinson, C. R., & Kao, C. M. (2004). Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metabolic Engineering, 6, 186–196.

    Article  PubMed  CAS  Google Scholar 

  11. Jaluria, P. (2007). The use of microarrays and related genomics tools to reverse engineer mammalian cell culture targeting specific cellular features with application in biotechnology, Ph.D. thesis, Johns Hopkins University, Baltimore, MD.

  12. Quackenbush, J. (2001). Computational analysis of microarray data. Nature Reviews. Genetics, 2, 418–427.

    Article  PubMed  CAS  Google Scholar 

  13. Hatzimanikatis, V., Lee, K. H., & Bailey, J. E. (1999). A mathematical description of regulation of the G1-S transition of the mammalian cell cycle. Biotechnology and Bioengineering, 65, 631–637.

    Article  PubMed  CAS  Google Scholar 

  14. Bailey, J. E., Sburlati, A., Hatzimanikatis, V., Lee, K., Renner, W. A., & Tsai, P. S. (2002) Inverse metabolic engineering: A strategy for directed genetic engineering of useful phenotypes. Biotechnology and Bioengineering, 79, 568–579.

    Article  PubMed  CAS  Google Scholar 

  15. Pollard, T. D. & Earnshaw, W C. (2004). Cell biology. Philadelphia, PA: Saunders.

  16. Jaluria, P., Betenbaugh, M., Konstantopoulos, K., & Shiloach, J. (2007). Enhancement of cell proliferation in mammalian cells by gene insertion of a cyclin-dependent kinase homolog. BMC Biotechnology, 7, 71.

    Article  PubMed  Google Scholar 

  17. Even, M. S., Sandusky, C. B., & Barnard, N. D. (2006). Serum-free hybridoma culture: Ethical, scientific and safety considerations. Trends in Biotechnology, 24, 105–108.

    Article  PubMed  CAS  Google Scholar 

  18. Sinacore, M. S., Drapeau, D., & Adamson, S.R. (2000). Adaptation of mammalian cells to growth in serum-free media. Molecular Biotechnology, 15, 249–257.

    Article  PubMed  CAS  Google Scholar 

  19. van der Valk, J., Mellor, D., Brands, R., Fischer, R., Gruber, F., Gstraunthaler, G., Hellebrekers, L., Hyllner, J., Jonker, F. H., Prieto, P., Thalen, M., & Baumans, V. (2004). The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicology In Vitro, 18, 1–12.

    Article  PubMed  Google Scholar 

  20. Jaluria, P., Konstantopoulos, K., Betenbaugh, M. & Shiloach, J. (2008). Egr1 and gas6 facilitate the adaptation of HEK-293 cells to serum-free media by conferring enhanced viability and higher growth rates. Biotechnology and Bioengineering, 99(6), 1443–1452.

    Article  PubMed  CAS  Google Scholar 

  21. Goswami, J., Sinskey, A. J., Steller, H., Stephanopoulos, G. N., & Wang, D. I. (1999). Apoptosis in batch cultures of Chinese hamster ovary cells. Biotechnology and Bioengineering, 62, 632–640.

    Article  PubMed  CAS  Google Scholar 

  22. Arden, N., Majors, B. S., Ahn, S. H., Oyler, G., Betenbaugh, M. J. (2007). Inhibiting the apoptosis pathway using MDM2 in mammalian cell cultures. Biotechnology and Bioengineering, 97, 601–614.

    Article  PubMed  CAS  Google Scholar 

  23. Wong, D. C., Wong, K. T., Lee, Y. Y., Morin, P. N., Heng, C. K., & Yap, M. G. (2006). Transcriptional profiling of apoptotic pathways in batch and fed-batch CHO cell cultures. Biotechnology and Bioengineering, 94, 373–82.

    Article  PubMed  CAS  Google Scholar 

  24. Sahm, H., Eggeling, L., Eikmanns, B., & Kramer, R. (1995). Metabolic design in amino-acid producing bacterium Corynebacterium glutamicum. FEMS Microbiology Reviews, 16, 243–252.

    Article  CAS  Google Scholar 

  25. Sindelar, G., & Wendisch, V. F. (2007). Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Applied Microbiology and Biotechnology, 76, 677–689.

    Article  PubMed  CAS  Google Scholar 

  26. Imaizumi, A., Takikawa, R., Koseki, C., Usuda, Y., Yasueda, H., Kojima, H., Matsui, K., & Sugimoto, S. (2005). Improved production of l-lysine by disruption of stationary phase-specific rmf gene in Escherichia coli. Journal of Biotechnology, 117, 111–118.

    Article  PubMed  CAS  Google Scholar 

  27. Gill, R. T., DeLisa, M. P., Valdes, J. J., & Bentley, W. E. (2001). Genomic analysis of high-cell-density recombinant Escherichia coli fermentation and “cell conditioning” for improved recombinant protein yield. Biotechnology and Bioengineering, 72, 85–95.

    Article  PubMed  CAS  Google Scholar 

  28. Oh, M.K., & Liao, J.C. (2000). Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnology Progress, 16, 278–286.

    Article  PubMed  CAS  Google Scholar 

  29. Boccazzi, P., Zanzotto, A., Szita, N., Bhattacharya, S., Jensen, K.F., & Sinskey, A.J. (2005). Gene expression analysis of Escherichia coli grown in miniaturized bioreactor platforms for high-throughput analysis of growth and genomic data. Applied Microbiology and Biotechnology, 68, 518–532.

    Article  PubMed  CAS  Google Scholar 

  30. Hirasawa, T., Yoshikawa, K., Nakakura, Y., Nagahisa, K., Furusawa, C., Katakura, Y., Shimizu, H., & Shioya, S. (2007). Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray, Data Analysis, 131, 34–44.

    CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the intramural program at the National Institute of Diabetes & Digestive & Kidney diseases, National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Shiloach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaluria, P., Chu, C., Betenbaugh, M. et al. Cells by Design: A Mini-Review of Targeting Cell Engineering Using DNA Microarrays. Mol Biotechnol 39, 105–111 (2008). https://doi.org/10.1007/s12033-008-9048-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9048-5

Keywords

Navigation