Skip to main content

Advertisement

Log in

Coexisting ductal carcinoma in situ independently predicts lower tumor aggressiveness in node-positive luminal breast cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Primary breast invasive ductal carcinoma coexisting with ductal carcinoma in situ (IDC-DCIS) is characterized by lower proliferation rate and metastatic propensity than size-matched pure IDC. IDC-DCIS is also more often ER-positive, PR-positive and/or HER2-positive. This analysis aims to clarify whether the presence of coexisting DCIS in IDC affects tumor aggressiveness in various biological subtypes of breast cancer, respectively. Tumor data obtained from 1,355 consecutive female patients undergoing upfront surgery for primary breast cancer were analyzed retrospectively; 196 patients with pure DCIS were excluded. Based on evidence that immunohistochemistry (IHC) provides a reasonable approximation of molecular phenotypes, the tumor samples were divided into 4 groups: (1) luminal A (ER and/or PR-positive, HER2-negative, Ki67 ≤ 12), (2) luminal B (ER and/or PR-positive, HER2-negative, Ki67 > 12), (3) HER2 (HER2-positive) and (4) basal-like (triple-negative) disease. Ki67 expression and nodal involvement of IDC with or without DCIS in these groups were compared. The number of patients with luminal A, luminal B, HER2 and basal-like breast cancer were 396, 265, 258 and 117, respectively. Ki-67 was lower in IDC-DCIS than in size-adjusted pure IDC of both luminal A and luminal B subtypes (P = 0.15 and <0.005, respectively). In HER2 or basal-like tumors, there were no significant difference between pure IDC and IDC-DCIS. The presence of coexisting DCIS in IDC predicts lower biological aggressiveness in luminal cancers but not in the conventionally more aggressive HER2-positive and triple-negative subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jo BH, Chun YK. Heterogeneity of invasive ductal carcinoma: proposal for a hypothetical classification. J Korean Med Sci. 2006;21:460–8.

    Article  PubMed  Google Scholar 

  2. Leong AS, Sormunen RT, Vinyuvat S, et al. Biologic markers in ductal carcinoma in situ and concurrent infiltrating carcinoma. A comparison of eight contemporary grading systems. Am J Clin Pathol. 2001;115:709–18.

    Article  PubMed  CAS  Google Scholar 

  3. Warnberg F, Nordgren H, Bergkvist L, Holmberg L. Tumour markers in breast carcinoma correlate with grade rather than with invasiveness. Br J Cancer. 2001;85:869–74.

    Article  PubMed  CAS  Google Scholar 

  4. Steinman S, Wang J, Bourne P, Yang Q, Tang P. Expression of cytokeratin markers, ER-alpha, PR, HER-2/neu, and EGFR in pure ductal carcinoma in situ (DCIS) and DCIS with co-existing invasive ductal carcinoma (IDC) of the breast. Ann Clin Lab Sci. 2007;37:127–34.

    PubMed  CAS  Google Scholar 

  5. Schorr MC, Pedrini JL, Savaris RF, Zettler CG. Are the pure in situ breast ductal carcinomas and those associated with invasive carcinoma the same? Appl Immunohistochem Mol Morphol. 2010;18:51–4.

    Article  PubMed  Google Scholar 

  6. Iakovlev V, Arneson N, Wong V, Wang C, Leung S, Iokovleva G, Warren K, Pintilie M, Done S. Genomic differences between pure ductal carcinoma in situ of the breast and that associated with invasive disease: a calibrated aCGH study. Clin Cancer Res. 2008;14:4446–54.

    Article  PubMed  CAS  Google Scholar 

  7. Aubele M, Mattis A, Zitzelsberger H, Walch A, Kremer M, Welzl G, Hofler H, Werner M. Extensive ductal carcinoma in situ with small foci of invasive ductal carcinoma: evidence of genetic resemblance by CGH. Int J Cancer. 2000;85:82–6.

    Article  PubMed  CAS  Google Scholar 

  8. Castro NP, Osorio C, Torres C, et al. Evidence that molecular changes in cells occur before morphological alterations during the progression of breast ductal carcinoma. Breast Cancer Res. 2008;10:R87. Epub.

    Google Scholar 

  9. Wong H, Lau S, Yau T, et al. Presence of an in situ component is associated with reduced biological aggressiveness of size-matched invasive breast cancer. Br J Cancer. 2010;102:1391–6.

    Article  PubMed  CAS  Google Scholar 

  10. Mylonas I, Makovitzky J, Jeschke U, Briese V, Friese K, Gerber B. Expression of Her2/neu, steroid receptors (ER and PR), Ki67 and p53 in invasive mammary ductal carcinoma associated with ductal carcinoma in situ (DCIS) versus invasive breast cancer alone. Anticancer Res. 2005;25:1719–23.

    PubMed  CAS  Google Scholar 

  11. Papantoniou V, Sotiropoulou E, Valsamaki P, et al. Breast density, scintimammographic (99 m)Tc(V)DMSA uptake, and calcitonin gene related peptide (CGRP) expression in mixed invasive ductal associated with extensive in situ ductal carcinoma (IDC + DCIS) and pure invasive ductal carcinoma (IDC): correlation with estrogen receptor (ER) status, proliferation index Ki-67, and histological grade. Breast Cancer. 2010. [Epub ahead of print].

  12. Chagpar AB, McMasters KM, Sahoo S, Edwards MJ. Does ductal carcinoma in situ accompanying invasive carcinoma affect prognosis? Surgery. 2009;146:561–7.

    Article  PubMed  Google Scholar 

  13. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.

    Article  PubMed  CAS  Google Scholar 

  14. Onitilo AA, Engel JM, Greenlee RT, Mukesh BN. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res. 2009;7:4–13.

    Article  PubMed  CAS  Google Scholar 

  15. Cheang MC, Chia SK, Voduc D, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101:736–50.

    Article  PubMed  CAS  Google Scholar 

  16. Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10:5367–74.

    Article  PubMed  CAS  Google Scholar 

  17. Livasy CA, Karaca G, Nanda R, et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol. 2006;19:264–71.

    Article  PubMed  CAS  Google Scholar 

  18. Abd El-Rehim DM, Ball G, Pinder SE, et al. High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer. 2005;116:340–50.

    Article  PubMed  CAS  Google Scholar 

  19. Fitzgibbons PL, Page DL, Weaver D, et al. Prognostic factors in breast cancer. College of American pathologists consensus statement 1999. Arch Pathol Lab Med. 2000;124:966–78.

    PubMed  CAS  Google Scholar 

  20. Jung SY, Han W, Lee JW, Ko E, Kim E, Yu JH, Moon HG, Park IA, Oh DY, Im SA, Kin TY, Hwang KT, Kin SW, Noh DY. Ki-67 expression gives additional prognostic information on St. Gallen 2007 and adjuvant! online risk categories in early breast cancer. Ann Surg Oncol. 2009;16:1112–21. 14 Feb 2009 Online.

    Article  PubMed  Google Scholar 

  21. Penault-Llorca F, Andre F, Sagan C, et al. Ki67 expression and docetaxel efficacy in patients with estrogen receptor-positive breast cancer. J Clin Oncol. 2009;27:2809–15.

    Article  PubMed  CAS  Google Scholar 

  22. Bouzubar N, Walker KJ, Griffiths K, Ellis IO, Elston CW, Robertson JF, Blamey RW, Nicholson RI. Ki67 immunostaining in primary breast cancer: pathological and clinical associations. Br J Cancer. 1989;59:943–7.

    Article  PubMed  CAS  Google Scholar 

  23. Barnard NJ, Hall PA, Lemoine NR, Kadar N. Proliferative index in breast carcinoma determined in situ by Ki67 immunostaining and its relationship to clinical and pathological variables. J Pathol. 1987;152:287–95.

    Article  PubMed  CAS  Google Scholar 

  24. Locker AP, Birrell K, Bell JA, Nicholson RI, Elston CW, Blamey RW, Ellis IO. Ki67 immunoreactivity in breast carcinoma: relationships to prognostic variables and short term survival. Eur J Surg Oncol. 1992;18:224–9.

    PubMed  CAS  Google Scholar 

  25. Yerushalmi R, Woods R, Ravdin PM, et al. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 2010;11:174–83.

    Article  PubMed  CAS  Google Scholar 

  26. McClelland RA, Finlay P, Walker KJ, et al. Automated quantitation of immunocytochemically localized estrogen receptors in human breast cancer. Cancer Res. 1990;50:3545–50.

    PubMed  CAS  Google Scholar 

  27. Sauter G, Lee J, Bartlett JM, et al. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations. J Clin Oncol. 2009;27:1323–33.

    Article  PubMed  CAS  Google Scholar 

  28. Breast cancer facts in Hong Kong report: report no. 2 (2010 issue). Hong Kong breast cancer registry. Available from: http://www.hkbcf.org/data.php?aid=113&did=126&lang=eng.

  29. Montemurro F, Aglietta M. Hormone receptor-positive early breast cancer: controversies in the use of adjuvant chemotherapy. Endocr Relat Cancer. 2009;16:1091–102.

    Article  PubMed  Google Scholar 

  30. Hassett MJ, Hughes ME, Niland JC, et al. Chemotherapy use for hormone receptor-positive, lymph node-negative breast cancer. J Clin Oncol. 2008;26:5553–60.

    Article  PubMed  Google Scholar 

  31. Early Breast Cancer Trialists’ Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet 1998;352:930–42.

    Google Scholar 

  32. Albain KS, Barlow WE, Ravdin PM, et al. Adjuvant chemotherapy and timing of tamoxifen in postmenopausal patients with endocrine-responsive, node-positive breast cancer: a phase 3, open-label, randomised controlled trial. Lancet. 2009;374:2055–63.

    Article  PubMed  Google Scholar 

  33. Albain KS. Adjuvant chemotherapy for lymph node-negative, estrogen receptor-negative breast cancer: a tale of three trials. J Natl Cancer Inst. 2004;96:1801–4.

    Article  PubMed  Google Scholar 

  34. Pagani O, Gelber S, Simoncini E, et al. Is adjuvant chemotherapy of benefit for postmenopausal women who receive endocrine treatment for highly endocrine-responsive, node-positive breast cancer? International breast cancer study group trials VII and 12–93. Breast Cancer Res Treat. 2009;116:491–500.

    Article  PubMed  CAS  Google Scholar 

  35. Paik S, Tang G, Shak S, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24:3726–34.

    Article  PubMed  CAS  Google Scholar 

  36. van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  37. Albain KS, Barlow WE, Shak S, et al. Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol. 2010;11:55–65.

    Article  PubMed  CAS  Google Scholar 

  38. Lo SS, Mumby PB, Norton J, et al. Prospective multicenter study of the impact of the 21-gene recurrence score assay on medical oncologist and patient adjuvant breast cancer treatment selection. J Clin Oncol. 2010;28:1671–6.

    Article  PubMed  Google Scholar 

  39. Lacroix M, Toillon RA, Leclercq G. Stable ‘portrait’ of breast tumors during progression: data from biology, pathology and genetics. Endocr Relat Cancer. 2004;11:497–522.

    Article  PubMed  CAS  Google Scholar 

  40. Glockner S, Lehmann U, Wilke N, et al. Amplification of growth regulatory genes in intraductal breast cancer is associated with higher nuclear grade but not with the progression to invasiveness. Lab Invest. 2001;81:565–71.

    Article  PubMed  CAS  Google Scholar 

  41. Buerger H, Simon R, Schafer KL, et al. Genetic relation of lobular carcinoma in situ, ductal carcinoma in situ, and associated invasive carcinoma of the breast. Mol Pathol. 2000;53:118–21.

    Article  PubMed  CAS  Google Scholar 

  42. Lehmann U, Langer F, Feist H, et al. Quantitative assessment of promoter hypermethylation during breast cancer development. Am J Pathol. 2002;160:605–12.

    Article  PubMed  CAS  Google Scholar 

  43. Borresen-Dale AL. TP53 and breast cancer. Hum Mutat. 2003;21:292–300.

    Article  PubMed  CAS  Google Scholar 

  44. Osborne C, Wilson P, Tripathy D. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist. 2004;9:361–77.

    Article  PubMed  CAS  Google Scholar 

  45. Hudziak RM, Schlessinger J, Ullrich A. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc Natl Acad Sci USA. 1987;84:7159–63.

    Article  PubMed  CAS  Google Scholar 

  46. Di Fiore PP, Pierce JH, Kraus MH, et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987;237:178–82.

    Article  PubMed  CAS  Google Scholar 

  47. Chazin VR, Kaleko M, Miller AD, Slamon DJ. Transformation mediated by the human HER-2 gene independent of the epidermal growth factor receptor. Oncogene. 1992;7:1859–66.

    PubMed  CAS  Google Scholar 

  48. Pietras RJ, Arboleda J, Reese DM, et al. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene. 1995;10:2435–46.

    PubMed  CAS  Google Scholar 

  49. Banerjee S, Reis-Filho JS, Ashley S, et al. Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol. 2006;59:729–35.

    Article  PubMed  CAS  Google Scholar 

  50. Cheang MC, Voduc D, Bajdik C, et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res. 2008;14:1368–76.

    Article  PubMed  CAS  Google Scholar 

  51. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  PubMed  CAS  Google Scholar 

  52. Bhargava R, Dabbs DJ. Luminal B breast tumors are not HER2 positive. Breast Cancer Res. 2008;10:404. author reply 405.

    Article  PubMed  Google Scholar 

  53. Tang P, Skinner KA, Hicks DG. Molecular classification of breast carcinomas by immunohistochemical analysis: are we ready? Diagn Mol Pathol. 2009;18:125–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, H., Lau, S., Leung, R. et al. Coexisting ductal carcinoma in situ independently predicts lower tumor aggressiveness in node-positive luminal breast cancer. Med Oncol 29, 1536–1542 (2012). https://doi.org/10.1007/s12032-011-0082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-011-0082-y

Keywords

Navigation