Skip to main content
Log in

Alpha7 Nicotinic Acetylcholine Receptor Expression and Activity During Neuronal Differentiation of PC12 Pheochromocytoma Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Nicotinic acetylcholine receptors (nAChR) exert pivotal roles in synaptic transmission, neuroprotection and differentiation. Particularly, homomeric α7 receptors participate in neurite outgrowth, presynaptic control of neurotransmitter release and Ca2+ influx. However, the study of recombinant α7 nAChRs in transfected cell lines is difficult due to low expression of functional receptor channels. We show that PC12 pheochromocytoma cells induced to differentiation into neurons are an adequate model for studying differential nAChR gene expression and receptor activity. Whole-cell current recording indicated that receptor responses increased during the course of differentiation. Transcription of mRNAs coding for α3, α5, α7, β2 and β4 subunits was present during the course of differentiation, while mRNAs coding for α2, α4 and β3 subunits were not expressed in PC12 cells. α7 subunit expression was highest following 1 day of induction to differentiation. Activity of α7 nAChRs, however, was most elevated on day 2 as revealed by inhibition experiments in the presence of 10 nM methyllycaconitine, rapid current decay and receptor responsiveness to the α7 agonist choline. Increased α7 receptor activity was noted when PC12 were induced to differentiation in the presence of choline, confirming that chronic agonist treatment augments nAChR activity. In summary, PC12 cells are an adequate model to study the role and pharmacological properties of this receptor during neuronal differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

nAChR:

nicotinic acetylcholine receptor

MLA:

Methyllycaconitine citrate

CCh:

Carbamoylcholine

b-FGF:

basic fibroblast growth factor

dbcAMP:

dibutyril cAMP

References

  • Adams CE, Broide RS, Chen Y, Winzer-Serhan UH, Henderson TA, Leslie FM et al (2002) Development of the alpha7 nicotinic cholinergic receptor in rat hippocampal formation. Brain Res Dev Brain Res 139:175–187

    Article  CAS  PubMed  Google Scholar 

  • Alkondon M, Albuquerque EX (1994) Presence of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat olfactory bulb neurons. Neurosci Lett 176:152–156

    Article  CAS  PubMed  Google Scholar 

  • Alkondon M, Pereira EF, Cortes WS, Maelicke A, Albuquerque EX (1997) Choline is a selective agonist of alpha7 nicotinic acetylcholine receptors in the rat brain neurons. Eur J Neurosci 9:2734–2742

    Article  CAS  PubMed  Google Scholar 

  • Alkondon M, Braga MF, Pereira EF, Maelicke A, Albuquerque EX (2000) Alpha7 nicotinic acetylcholine receptors and modulation of gabaergic synaptic transmission in the hippocampus. Eur J Pharmacol 393:59–67

    Article  CAS  PubMed  Google Scholar 

  • Al-Robaiy S, Rupf S, Eschrich K (2001) Rapid competitive PCR using melting curve analysis for DNA quantification. Biotechniques 31(1382–1386):1388

    Google Scholar 

  • Angelastro JM, Ignatova TN, Kukekov VG, Steindler DA, Stengren GB, Mendelsohn C et al (2003) Regulated expression of ATF5 is required for the progression of neural progenitor cells to neurons. J Neurosci 23:4590–4600

    CAS  PubMed  Google Scholar 

  • Avila AM, Dávila-García MI, Ascarrunz VS, Xiao Y, Kellar KJ (2003) Differential regulation of nicotinic acetylcholine receptors in PC12 cells by nicotine and nerve growth factor. Mol Pharmacol 64:974–986

    Article  CAS  PubMed  Google Scholar 

  • Bray C, Son JH, Meizel S (2005) Acetylcholine causes an increase of intracellular calcium in human sperm. Mol Hum Reprod 11:881–889

    Article  CAS  PubMed  Google Scholar 

  • Brehm P, Henderson L (1988) Regulation of acetylcholine receptor channel function during development of skeletal muscle. Dev Biol 129:1–11

    Article  CAS  PubMed  Google Scholar 

  • Brenner HR, Witzemann V, Sakmann B (1990) Imprinting of acetylcholine receptor messenger RNA accumulation in mammalian neuromuscular synapses. Nature 344:544–547

    Article  CAS  PubMed  Google Scholar 

  • Buisson B, Bertrand D (2002) Nicotine addiction: the possible role of functional upregulation Trends Pharmacol Sci 23:130–136

    CAS  Google Scholar 

  • Cho CH, Song W, Leitzell K, Teo E, Meleth AD, Quick MW et al (2005) (2005) Rapid upregulation of alpha7 nicotinic acetylcholine receptors by tyrosine dephosphorylation. J Neurosci 25:3712–3723

    Article  CAS  PubMed  Google Scholar 

  • Corringer PJ, Sallette J, Changeux JP (2006) Nicotine enhances intracellular nicotinic receptor maturation: a novel mechanism of neural plasticity? J Physiol Paris 99:162–171

    Article  CAS  PubMed  Google Scholar 

  • El Kouhen R, Hu M, Anderson DJ, Li J, Gopalakrishnan M (2009) Pharmacology of alpha7 nicotinic acetylcholine receptor mediated extracellular signal–regulated kinase signalling in PC12 cells. Br J Pharmacol 156:638–648

    Article  CAS  PubMed  Google Scholar 

  • Falk L, Nordberg A, Seiger A, Kjaeldgaard A, Hellström-Lindahl E (2003) Higher expression of alpha7 nicotinic acetylcholine receptors in human fetal compared to adult brain. Brain Res Dev Brain Res 142:151–160

    Article  CAS  PubMed  Google Scholar 

  • Gotti C, Fornasari D, Clementi F (1997) Human neuronal nicotinic receptors. Prog Neurobiol 53:199–237

    Article  CAS  PubMed  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428

    Article  CAS  PubMed  Google Scholar 

  • Grønlien JH, Håkerud M, Ween H, Thorin-Hagene K, Briggs CA, Gopalakrishnan M, Malysz J (2007) Distinct profiles of alpha7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes. Mol Pharmacol 72:715–724

    Article  PubMed  CAS  Google Scholar 

  • Hatton GI, Yang QZ (2002) Synaptic potentials mediated by alpha 7 nicotinic acetylcholine receptors in supraoptic nucleus. J Neurosci 22:29–37

    CAS  PubMed  Google Scholar 

  • Ho PL, Raw I (1992) Cyclic AMP potentiates bFGF-induced neurite outgrowth in PC12 cells. J Cell Physiol 150:647–656

    Article  CAS  PubMed  Google Scholar 

  • Huang CM, Tsay KE, Kao LS (1996) Role of Ca2+ in differentiation mediated by nerve growth factor and dibutyryl cyclic AMP in PC12 cells. J Neurochem 67:530–539

    Article  CAS  PubMed  Google Scholar 

  • Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K et al (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J 274:3799–3845

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhang J, Berg DK (2007) Role of endogenous nicotinic signaling in guiding neuronal development. Biochem Pharmacol 74:1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Magdesian MH, Nery AA, Martins AH, Juliano MA, Juliano L, Ulrich H et al (2005) Peptide blockers of the inhibition of neuronal nicotinic acetylcholine receptors by amyloid beta. J Biol Chem 280:31085–31090

    Article  CAS  PubMed  Google Scholar 

  • Matsubayashi H, Inoue A, Amano T, Seki T, Nakata Y, Sasa M et al (2004) Involvement of alpha7- and alpha4beta2-type postsynaptic nicotinic acetylcholine receptors in nicotine-induced excitation of dopaminergic neurons in the substantia nigra: a patch clamp and single-cell PCR study using acutely dissociated nigral neurons. Brain Res Mol Brain Res 129:1–7

    Article  CAS  PubMed  Google Scholar 

  • McGehee DS, Role LW (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57:521–546

    Article  CAS  PubMed  Google Scholar 

  • Michel PP, Vyas S, Agid Y (1995) Synergistic differentiation by chronic exposure to cyclic AMP and nerve growth factor renders rat phaeochromocytoma PC12 cells totally dependent upon trophic support for survival. Eur J Neurosci 7:251–260

    Article  CAS  PubMed  Google Scholar 

  • Papke RL, Dwoskin LP, Crooks PA (2007) The pharmacological activity of nicotine and nornicotine on nAChRs subtypes: relevance to nicotine dependence and drug discovery. J Neurochem 101:160–167

    Article  CAS  PubMed  Google Scholar 

  • Peng JH, Fryer JD, Hurst RS, Schroeder KM, George AA, Morrissy S et al (2005) High-affinity epibatidine binding of functional, human alpha7-nicotinic acetylcholine receptors stably and heterologously expressed de novo in human SH-EP1 cells. J Pharmacol Exp Ther 313:24–35

    Article  CAS  PubMed  Google Scholar 

  • Resende RR, Gomes KN, Adhikari A, Britto LR, Ulrich H (2008a) Mechanism of acetylcholine-induced calcium signaling during neuronal differentiation of P19 embryonal carcinoma cells in vitro. Cell Calcium 43:107–121

    Article  CAS  PubMed  Google Scholar 

  • Resende RR, Alves AS, Britto LR, Ulrich H (2008b) Role of acetylcholine receptors in proliferation and differentiation of P19 embryonal carcinoma cells. Exp Cell Res 314:1429–1443

    Article  CAS  PubMed  Google Scholar 

  • Richter-Landsberg C, Jastorff B (1986) The role of cAMP in nerve growth factor-promoted neurite outgrowth in PC12 cells. J Cell Biol 102:821–829

    Article  CAS  PubMed  Google Scholar 

  • Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16:1077–1085

    Article  CAS  PubMed  Google Scholar 

  • Rydel RE, Greene LA (1987) Acidic and basic fibroblast growth factors promote stable neurite outgrowth and neuronal differentiation in cultures of PC12 cells. J Neurosci 7:3639–3653

    CAS  PubMed  Google Scholar 

  • Sallette J, Bohler S, Benoit P, Soudant M, Pons S, Le Novère N et al (2004) An extracellular protein microdomain controls up-regulation of neuronal nicotinic acetylcholine receptors by nicotine. J Biol Chem 279:18767–18775

    Article  CAS  PubMed  Google Scholar 

  • Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  Google Scholar 

  • Sokolova E, Matteoni C, Nistri A (2005) Desensitization of neuronal nicotinic receptors of human neuroblastoma SH-SY5Y cells during short or long exposure to nicotine. Br J Pharmacol 146:1087–1095

    Article  CAS  PubMed  Google Scholar 

  • Taly A, Delarue M, Grutter T, Nilges M, Le Novère N, Corringer PJ et al (2005) Normal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism. Biophys J 88:3954–3965

    Article  CAS  PubMed  Google Scholar 

  • Tischler AS, Greene LA (1975) Nerve growth factor-induced process formation by cultured rat pheochromocytoma cells. Nature 258:341–342

    Article  CAS  PubMed  Google Scholar 

  • Trujillo CA, Schwindt TT, Martins AH, Alves JM, Mello LE, Ulrich H (2009) Novel perspectives of neural stem cell differentiation: from neurotransmitters to therapeutics. Cytometry A 75:38–53

    PubMed  Google Scholar 

  • Udgaonkar JB, Hess GP (1987) Acetylcholine receptor: channel-opening kinetics evaluated by rapid chemical kinetic and single-channel current measurements. Biophys J 52:873–883

    Article  CAS  PubMed  Google Scholar 

  • Ulrich H, Akk G, Nery AA, Trujillo CA, Rodriguez AD, Eterović VA (2008) Mode of cembranoid action on embryonic muscle acetylcholine receptor. J Neurosci Res 86:93–107

    Article  CAS  PubMed  Google Scholar 

  • Vallejo YF, Buisson B, Bertrand D, Green WN (2005) Chronic nicotine exposure upregulates nicotinic receptors by a novel mechanism. J Neurosci 25:5563–5572

    Article  CAS  PubMed  Google Scholar 

  • Whiteaker P, Christensen S, Yoshikami D, Dowell C, Watkins M, Gulyas J et al (2007) Discovery, synthesis, and structure activity of a highly selective alpha7 nicotinic acetylcholine receptor antagonist. Biochemistry 46:6628–6636

    Article  CAS  PubMed  Google Scholar 

  • Wonnacott S, Sidhpura N, Balfour DJ (2005) Nicotine: from molecular mechanisms to behaviour. Curr Opin Pharmacol 5:53–59

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Kuo YP, George AA, Peng JH, Purandare MS, Schroeder KM et al (2003) Functional properties of homomeric, human alpha 7-nicotinic acetylcholine receptors heterologously expressed in the SH-EP1 human epithelial cell line. J Pharmacol Exp Ther 305:1132–1141

    Article  CAS  PubMed  Google Scholar 

  • Zoli M, Le Novère N, Hill JA Jr, Changeux JP (1995) Developmental regulation of nicotinic ACh receptor subunit mRNAs in the rat central and peripheral nervous systems. J Neurosci 15:1912–1939

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by research grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), project no.: 2006/61285-9, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Brazil, awarded to H.U.; A.A. N.'s and C.A.T.'s Ph.D. theses are supported by fellowships from FAPESP, Brazil. A.H.M and V.A.E. acknowledge the NIH grant support (UPR-PRAABREP20RR016470 and G12RR03035-24), R.R.R is grateful for grants from CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Ulrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nery, A.A., Resende, R.R., Martins, A.H. et al. Alpha7 Nicotinic Acetylcholine Receptor Expression and Activity During Neuronal Differentiation of PC12 Pheochromocytoma Cells. J Mol Neurosci 41, 329–339 (2010). https://doi.org/10.1007/s12031-010-9369-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9369-2

Keywords

Navigation