Skip to main content
Log in

SAGE Analysis of Genes Differentially Expressed in Presymptomatic TgSOD1G93A Transgenic Mice Identified Cellular Processes Involved in Early Stage of ALS Pathology

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition in which motor neurons of the spinal cord and motor cortex degenerate, resulting in progressive paralysis. Transgenic mice expressing human mutant Cu/Zn superoxide dismutase-1 (SOD1) present a pathology that is very similar to that seen in human ALS patients. Using serial analysis of gene expression, we investigated the effects of mutant human SOD1 protein on global gene expression in the spinal cord and lower brain stem of presymptomatic TgSOD1G93A transgenic mice. One hundred twenty transcripts were found to be significantly dysregulated in the presence of mutant SOD1 protein, 79 being down-regulated and 41 up-regulated. Quantitative RT-PCR was used to confirm the differential expression of nine of these genes. Immunohistochemistry analysis on spinal cord sections revealed that dysregulation of these mutant SOD1-induced molecular pathways are concomitant to the appearance of discrete signs of neuropathology including neuronal loss, elevated gliosis, and ubiquitin-positive deposits. Altogether, our data showed that early signs of neuropathology in the SOD1 mutant mice are accompanied by altered expression of genes involved in various biological processes including apoptosis, oxidative stress, ATP biosynthesis, myelination, and axonal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  • Bendotti C, Atzori C, Piva R, Tortarolo M, Strong MJ, DeBiasi S, Migheli A (2004) Activated p38MAPK is a novel component of the intracellular inclusions found in human amyotrophic lateral sclerosis and mutant SOD1 transgenic mice. J Neuropathol Exp Neurol 63:113–119

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284

    Article  CAS  PubMed  Google Scholar 

  • Boillee S, Vande Velde C, Cleveland D (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59

    Article  CAS  PubMed  Google Scholar 

  • Boyd-Kimball D, Castegna A, Sultana R, Poon HF, Petroze R, Lynn BC, Klein JB, Butterfield DA (2005) Proteomic identification of proteins oxidized by Abeta(1–42) in synaptosomes: implications for Alzheimer's disease. Brain Res 1044:206–215

    Article  CAS  PubMed  Google Scholar 

  • Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749

    Article  CAS  PubMed  Google Scholar 

  • Casoni F, Basso M, Massignan T, Gianazza E, Cheroni C, Salmona M, Bendotti C, Bonetto V (2005) Protein nitration in a mouse model of familial amyotrophic lateral sclerosis: possible multifunctional role in the pathogenesis. J Biol Chem 280:16295–16304

    Article  CAS  PubMed  Google Scholar 

  • Danial NN, Gramm CF, Scorrano L et al (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424:952–956

    Article  CAS  PubMed  Google Scholar 

  • Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K (2007) Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10:608–614

    Article  PubMed  Google Scholar 

  • Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J, Shaw PJ (2007) Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J Neurosci 27:9201–9219

    Article  CAS  PubMed  Google Scholar 

  • Gitcho MA, Baloh RH, Chakraverty S et al (2008) TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63:535–538

    Article  CAS  PubMed  Google Scholar 

  • Gonin-Giraud S, Mathieu AL, Diocou S, Tomkowiak M, Delorme G, Marvel J (2002) Decreased glycolytic metabolism contributes to but is not the inducer of apoptosis following IL-3-starvation. Cell Death Differ 9:1147–1157

    Article  CAS  PubMed  Google Scholar 

  • Gurney ME, Pu H, Chiu AY et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  • Hatfield MD, Reis AM, Obeso D, Cook JR, Thompson DM, Rao M, Friedberg EC, Queimado L (2006) Identification of MMS19 domains with distinct functions in NER and transcription. DNA Repair (Amst) 5:914–924

    Article  CAS  Google Scholar 

  • Hiraiwa M, Campana WM, Mizisin AP, Mohiuddin L, O'Brien JS (1999) Prosaposin: a myelinotrophic protein that promotes expression of myelin constituents and is secreted after nerve injury. Glia 26:353–360

    Article  CAS  PubMed  Google Scholar 

  • Klivenyi P, Ferrante RJ, Matthews RT et al (1999) Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med 5:347–350

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski TJ Jr, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Keng PC (2005) Studying the effects of actin cytoskeletal destabilization on cell cycle by cofilin overexpression. Mol Biotechnol 31:1–10

    Article  CAS  PubMed  Google Scholar 

  • Li QX, Mok SS, Laughton KM, McLean CA, Volitakis I, Cherny RA, Cheung NS, White AR, Masters CL (2006) Overexpression of Abeta is associated with acceleration of onset of motor impairment and superoxide dismutase 1 aggregation in an amyotrophic lateral sclerosis mouse model. Aging Cell 5:153–165

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Lillo C, Jonsson PA et al (2004) Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43:5–17

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lukas TJ, Luo WW, Mao H, Cole N, Siddique T (2006) Informatics-assisted protein profiling in a transgenic mouse model of amyotrophic lateral sclerosis. Mol Cell Proteomics 5:1233–1244

    Article  CAS  PubMed  Google Scholar 

  • Manfredi G, Xu Z (2005) Mitochondrial dysfunction and its role in motor neuron degeneration in ALS. Mitochondrion 5:77–87

    Article  CAS  PubMed  Google Scholar 

  • Maraganore DM, Lesnick TG, Elbaz A et al (2004) UCHL1 is a Parkinson's disease susceptibility gene. Ann Neurol 55:512–521

    Article  PubMed  Google Scholar 

  • Munch C, Sedlmeier R, Meyer T et al (2004) Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology 63:724–726

    CAS  PubMed  Google Scholar 

  • Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    Article  CAS  PubMed  Google Scholar 

  • Newbery HJ, Gillingwater TH, Dharmasaroja P, Peters J, Wharton SB, Thomson D, Ribchester RR, Abbott CM (2005) Progressive loss of motor neuron function in wasted mice: effects of a spontaneous null mutation in the gene for the eEF1 A2 translation factor. J Neuropathol Exp Neurol 64:295–303

    CAS  PubMed  Google Scholar 

  • Offen D, Barhum Y, Melamed E, Embacher N, Schindler C, Ransmayr G (2009) Spinal cord mRNA profile in patients with ALS: Comparison with transgenic mice expressing the human SOD-1 mutant. J Mol Neurosci 38:85–93

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Hong YH, Kim HJ, Kim SM, Kim MJ, Park KS, Sung JJ, Lee KW (2007) Pyruvate slows disease progression in a G93A SOD1 mutant transgenic mouse model. Neurosci Lett 413:265–269

    Article  CAS  PubMed  Google Scholar 

  • Pasinelli P, Belford ME, Lennon N, Bacskai BJ, Hyman BT, Trotti D, Brown RH Jr (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43:19–30

    Article  CAS  PubMed  Google Scholar 

  • Perluigi M, Fai PH, Hensley K, Pierce WM, Klein JB, Calabrese V, De Marco C, Butterfield DA (2005) Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice-A model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 38:960–968

    Article  CAS  PubMed  Google Scholar 

  • Perrin FE, Boisset G, Docquier M, Schaad O, Descombes P, Kato AC (2005) No widespread induction of cell death genes occurs in pure motoneurons in an amyotrophic lateral sclerosis mouse model. Hum Mol Genet 14:3309–3320

    Article  CAS  PubMed  Google Scholar 

  • Ran Q, Liang H, Gu M, Qi W, Walter CA, Roberts LJ II, Herman B, Richardson A, Van Remmen H (2004) Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J Biol Chem 279:55137–55146

    Article  CAS  PubMed  Google Scholar 

  • Rutherford NJ, Zhang YJ, Baker M et al (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4:e1000193

    Article  PubMed  Google Scholar 

  • Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, Velculescu VE (2002) Using the transcriptome to annotate the genome. Nat Biotechnol 20:508–512

    Article  CAS  PubMed  Google Scholar 

  • Sasaki S, Warita H, Abe K, Iwata M (2004) Slow component of axonal transport is impaired in the proximal axon of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol 107:452–460

    Article  PubMed  Google Scholar 

  • Sau D, De Biasi S, Vitellaro-Zuccarello L et al (2007) Mutation of SOD1 in ALS: a gain of a loss of function. Hum Mol Genet 16:1604–1618

    Article  CAS  PubMed  Google Scholar 

  • Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  CAS  PubMed  Google Scholar 

  • Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211

    Article  CAS  PubMed  Google Scholar 

  • Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    Article  CAS  PubMed  Google Scholar 

  • Wendt S, Dedeoglu A, Speer O, Wallimann T, Beal MF, Andreassen OA (2002) Reduced creatine kinase activity in transgenic amyotrophic lateral sclerosis mice. Free Radic Biol Med 32:920–926

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Health and Medical Research Council fellowships (171601 and 461204 to H.S.S); National Health and Medical Research Council Grants 219176, 257501, 215201, and 257529 (to H.S.S. and G.K.S.) and 208978 (to CLM and QXL); a grant in aid from the Motor Neurone Disease Research Institute of Australia (MLG, HSS and QXL); and a fellowship from the Deutsche Forschungsgemeinschaft (to T.B.).

DNA sequencing of SAGE libraries was performed by the Australian Genome Research Facility, which was established through the Commonwealth-funded Major National Research Facilities program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao-Xin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guipponi, M., Li, QX., Hyde, L. et al. SAGE Analysis of Genes Differentially Expressed in Presymptomatic TgSOD1G93A Transgenic Mice Identified Cellular Processes Involved in Early Stage of ALS Pathology. J Mol Neurosci 41, 172–182 (2010). https://doi.org/10.1007/s12031-009-9317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9317-1

Keywords

Navigation