Skip to main content

Advertisement

Log in

Effects of pcDNA3-β-NGF Gene-modified BMSC on the Rat Model of Parkinson’s Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

This study determined the effects of pcDNA3-β-nerve growth factor (NGF) gene-modified bone marrow stromal cells (BMSC) on the rat model of Parkinson’s disease (PD). The recombinant plasmid pcDNA3-β-NGF was transfected into BMSC, and NGF expression and its biological activity in vitro were detected. BMSC modified by the NGF gene were then grafted into the corpus striatum of PD rats, and the rotation behavior was evaluated at 1, 2, 4, and 6 weeks post-transplantation. A significant improvement in rotation behavior was observed in PD rats subjected to cell transplantation, especially in PD rats receiving NGF-modified BMSC. The genetically modified BMSC survived and expressed β-NGF but did not differentiate into tyrosine hydroxylase-positive cells in vivo. The present findings suggested that genetically modified BMSC could be effective for PD treatment, and the mechanisms might involve the neuroprotective effects of β-NGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arimatsu, Y., & Miyamoto, M. (1991). Survival-promoting effect of NGF on in vitro septohippocampal neurons with cholinergic and GABAergic phenotypes. Brain Research: Developmental Brain Research, 58, 189–201.

    Article  PubMed  CAS  Google Scholar 

  • Bao, X. M., & Shu, S. Y. (1991). The stereotaxic atlas of the rat brain. Peking: The People’s Medical.

    Google Scholar 

  • Barone, P., Bravi, D., Bermejo-Pareja, F., et al. (1999). Pergolide monotherapy in the treatment of early PD: A randomized, controlled study. Pergolide Monotherapy Study Group. Neurology, 53, 573–579.

    PubMed  CAS  Google Scholar 

  • Chaturvedi, R. K., Shukla, S., Seth, K., & Agrawal, A. K. (2006). Nerve growth factor increases survival of dopaminergic graft, rescue nigral dopaminergic neurons and restores functional deficits in rat model of Parkinson’s disease. Neuroscience Letters, 398, 44–49.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. J., Ou, Y. C., Liao, S. L., et al. (2007). Transplantation of bone marrow stromal cells for peripheral nerve repair. Experimental Neurology, 204, 443–453.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, C. E., & Deane, K. H. (2001). Ropinirole for levodopa-induced complications in Parkinson’s disease. Cochrane Database of Systematic Reviews, 1, CD001516.

    Google Scholar 

  • Deng, W., Obrocka, M., Fischer, I., & Prockop, D. J. (2001). In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochemical and Biophysical Research Communications, 282, 148–152.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Espejo, E., Armengol, J. A., Flores, J. A., Galan-Rodriguez, B., & Ramiro, S. (2005). Cells of the sympathoadrenal lineage: Biological properties as donor tissue for cell-replacement therapies for Parkinson’s disease. Brain Research: Brain Research Reviews, 49, 343–354.

    Article  PubMed  CAS  Google Scholar 

  • Freed, C. R., Greene, P. E., Breeze, R. E., et al. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. New England Journal of Medicine, 344, 710–719.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F., Melamed, E., Sahakian, B. J., & Wurtman, R. J. (1980). Circling behavior in rats with partial, unilateral nigro-striatal lesions: Effect of amphetamine, apomorphine, and DOPA. Pharmacology, Biochemistry and Behavior, 12, 185–188.

    Article  CAS  Google Scholar 

  • Hirata, Y., Meguro, T., & Kiuchi, K. (2006). Differential effect of nerve growth factor on dopaminergic neurotoxin-induced apoptosis. Journal of Neurochemistry, 99, 416–425.

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter, C. P., Schwarz, E. J., Hess, D., et al. (2002). Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceedings of the National Academy of Sciences of the United States of America, 99, 2199–2204.

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh, E. T., Loughlin, J., PHerbert, K. R., et al. (2006). Functionality of NGF-protected PC12 cells following exposure to 6-hydroxydopamine. Biochemical and Biophysical Research Communications, 351, 890–895.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B. J., Seo, J. H., Bubien, J. K., & Oh, Y. S. (2002). Differentiation of adult bone marrow stem cells into neuroprogenitor cells in vitro. Neuroreport, 13, 1185–1188.

    Article  PubMed  Google Scholar 

  • Kohyama, J., Abe, H., Shimazaki, T., et al. (2001). Brain from bone: Efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation, 68, 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Kopen, G. C., Prockop, D. J., & Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proceedings of the National Academy of Sciences of the United States of America, 96, 10711–10716.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Chen, J., Wang, L., Lu, M., & Chopp, M. (2001). Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology, 56, 1666–1672.

    PubMed  CAS  Google Scholar 

  • Li, F. Q., Wang, T. H., Dong, J., et al. (2005). Construction and identification of eukaryotic cell expression vector of human nerve growth factor beta gene. Sichuan Journal of Anatomy, 12, 2–5.

    Google Scholar 

  • Lu, D., Li, Y., Wang, L., Chen, J., Mahmood, A., & Chopp, M. (2001). Intraarterial administration of a marrow stromal cells in a rat model of traumatic brain injury. Journal of Neurotrauma, 18, 813–819.

    Article  PubMed  CAS  Google Scholar 

  • Mareddy, S., Crawford, R., Brooke, G., & Xiao, Y. (2007). Clonal isolation and characterization of bone marrow stromal cells from patients with osteoarthritis. Tissue Engineering, 13, 819–829.

    Article  PubMed  CAS  Google Scholar 

  • Minguell, J. J., Erices, A., & Conget, P. (2001). Mesenchymal stem cells. Experimental Biology and Medicine (Maywood), 226, 507–520.

    CAS  Google Scholar 

  • Miyasaki, J. M., Martin, W., Suchowersky, O., Weiner, W. J., & Lang, A. E. (2002). Practice parameter: Initiation of treatment for Parkinson’s disease: An evidence-based review: Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 58, 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Nutt, J. G., & Wooten, G. F. (2005). Clinical practice. Diagnosis and initial management of Parkinson’s disease. New England Journal of Medicine, 353, 1021–1027.

    Article  PubMed  CAS  Google Scholar 

  • Offen, D., Barhum, Y., Levy, Y. S., et al. (2007). Intrastriatal transplantation of mouse bone marrow-derived stem cells improves motor behavior in a mouse model of Parkinson’s disease. Journal of Neural Transmission, Supplementum, 72, 133–143.

    Article  CAS  Google Scholar 

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Pradier, P., Jalenques, I., Dalle, M., Reuling, R., Despres, G., & Romand, R. (1994). Distribution and metabolism patterns of plasma 7S- and beta-NGF in the adult male rat. Journal of Physiology Paris, 88, 273–277.

    Article  CAS  Google Scholar 

  • Prockop, D. J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 276, 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164, 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Schwarting, R. K., & Huston, J. P. (1996). Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Progress in Neurobiology, 49, 215–266.

    Article  PubMed  CAS  Google Scholar 

  • Schwarting, R. K., Huston, J. P., et al. (1996). The unilateral 6-hydroxydopamine lesion model in behavioral brain research: Analysis of functional deficits, recovery and treatments. Progress in Neurobiology, 50, 275–331.

    Article  PubMed  CAS  Google Scholar 

  • Tseng, P. Y., Chen, C. J., Sheu, C. C., Yu, C. W., & Huang, Y. S. (2007). Spontaneous differentiation of adult rat marrow stromal cells in a long-term culture. Journal of Veterinary Medical Science, 69, 95–102.

    Article  PubMed  Google Scholar 

  • Ungerstedt, U., & Arbuthnott, G. W. (1970). Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Research, 24, 485–493.

    Article  PubMed  CAS  Google Scholar 

  • Wei, P., Liu, J., Zhou, H. L., et al. (2007). Effects of engrafted neural stem cells derived from GFP transgenic mice in Parkinson’s disease rats. Neuroscience Letters, 419, 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Q. Y., Li, J., Feng, Z. T., & Wang, T. H. (2007). Bone marrow stromal cells of transgenic mice can improve the cognitive ability of an Alzheimer’s disease rat model. Neuroscience Letters, 417, 281–285.

    Article  PubMed  CAS  Google Scholar 

  • Ye, M., Wang, X. J., Zhang, Y. H., et al. (2007a). Therapeutic effects of differentiated bone marrow stromal cell transplantation on rat models of Parkinson’s disease. Parkinsonism & Related Disorders, 13, 44–49.

    Article  Google Scholar 

  • Ye, M., Wang, X. J., Zhang, Y. H., et al. (2007b). Transplantation of bone marrow stromal cells containing the neurturin gene in rat model of Parkinson’s disease. Brain Research, 1142, 206–216.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. S. K. Leong for his invaluable comments in the writing of this manuscript. This work was supported by the international collaboration grant of China Chunhui plan (Z2003-1-53013 and Z2005-1-53002), National Natural Science Foundation (no. 30660050) and the Chinese Medical Board of New York (CMB-00-72).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Hua Wang.

Additional information

The contribution of Zhong-Tang Feng is equal to the first author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, TH., Feng, ZT., Wei, P. et al. Effects of pcDNA3-β-NGF Gene-modified BMSC on the Rat Model of Parkinson’s Disease. J Mol Neurosci 35, 161–169 (2008). https://doi.org/10.1007/s12031-007-9032-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-9032-8

Keywords

Navigation