Skip to main content

Advertisement

Log in

F2-Isoprostanes as Biomarkers of Late-onset Alzheimer’s Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a syndrome caused by a few uncommon mutations that lead to early-onset disease, occurs in adults with Down’s syndrome, but is by far most commonly seen as a late-onset disease with multiple risk factors but no causative factors yet identified. Emerging data suggests a chronic disease model for AD with latency, prodrome, and dementia stages together lasting decades. Free radical damage to lipids in brain is one pathogenic process of AD that may be quantified with F2-isoprostanes (IsoPs). Whereas brain and cerebrospinal fluid (CSF) F2-IsoPs are reproducibly elevated in AD patients at both dementia and prodromal stages of disease, plasma and urine F2-IsoPs are not reproducibly increased in AD patients. CSF F2-IsoPs may be used to assist in diagnosis and aid in objective assessment of disease progression and response to therapeutics in patients with AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  • Arriagada, P. V., Marzloff, K., & Hyma, B. T. (1992). Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology, 42, 1681–1688.

    PubMed  CAS  Google Scholar 

  • Berg, L., McKeel, D. W., Miller, J. P., Baty, J., & Morris, J. C. (1993) Neuropathological indexes of Alzheimer’s disease in demented and nondemented persons aged 80 years and older. Archives of Neurology, 50, 349–358.

    PubMed  CAS  Google Scholar 

  • Bohnstedt, K. C., Karlberg, B., Wahlund, L., Jonhagen, M. E., Basun, H., & Schmidt, S. (2003). Determination of isoprostanes in urine samples from Alzheimer patients using porous graphitic carbon liquid chromatography-tandem mass spectrometry. Journal of Chromatography B Analytical Technology Biomedical Life Science, 796, 11–19.

    Article  CAS  Google Scholar 

  • Brookmeyer, R., Gray, S., & Kawas, C. (1998). Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. American Journal of Public Health, 88, 1337–1342.

    PubMed  CAS  Google Scholar 

  • Crystal, H. A., Dickson, D. W., Sliwinski, M. J., Lipton, R. B., Grober, E., Marks-Nelson, H., et al. (1993) Pathological markers associated with normal aging and dementia in the elderly. Annals of Neurology, 34, 566–573.

    Article  PubMed  CAS  Google Scholar 

  • Davis, D. G., Schmitt, F. A., Wekstein, D. R., & Markesbery, W. (1999) Alzheimer neuropathological alterations in aged cognitively normal subjects. Journal of Neuropathology and Experimental Neurology, 58, 376–388.

    PubMed  CAS  Google Scholar 

  • de Leon, M. J., Desanti, S., Zinkowski, R., Mehta, P. D., Pratico, D., Segal, S., et al. (2006). Longitudinal CSF and MRI biomarkers improve the diagnosis of mild cognitive impairment. Neurobiology of Aging, 27, 394–401.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, R. L., & Hay, J. W. (1994). The US economic and social costs of Alzheimer’s disease revisited. American Journal of Public Health, 84, 1261–1264.

    Article  PubMed  CAS  Google Scholar 

  • Evans, D. A. (1990). Estimated prevalence of Alzheimer’s disease in the United States. Milbank Quarterly, 68, 267–289.

    Article  PubMed  CAS  Google Scholar 

  • Feillet-Coudray, C., Tourtauchaux, R., Niculescu, M., Rock, E., Tauveron, I., Alexandre-Gouabau, M. C., et al. (1999). Plasma levels of 8-epiPGF2alpha, an in vivo marker of oxidative stress, are not affected by aging or Alzheimer’s disease. Free Radical Biology & Medicine, 27, 463–469.

    Article  CAS  Google Scholar 

  • Galasko, D., Katzman, R., Salmon, D., & Hansen, L. (1996). Clinical and neuropathological findings in Lewy body dementias. Brain and Cognition, 31, 166–175.

    Article  PubMed  CAS  Google Scholar 

  • Green, M. S., Kaye, J. A., & Ball, M. J. (2000) The Oregon brain aging study: Neuropathology accompanying health aging in the oldest old. Neurology, 54, 105–113.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Haroutunian, V., Purohit, D. P., Perl, D. P., Marin, D., Khan, K., Lantz, M., et al. (1999). Neurofibrillary tangles in nondemented elderly subjects and mild Alzheimer disease. Archives of Neurology, 56, 713–718.

    Article  PubMed  CAS  Google Scholar 

  • Hulette, C. M., Welsh-Bohmer, K. A., Murray, M. G., Saunders, A. M., Mash, D. C., & McIntyre, L. M. (1998) Neuropathological and neuropsychological changes in “normal” aging: Evidence for preclinical Alzheimer disease in cognitively normal individuals. Journal of Neuropathology and Experimental Neurology, 57, 1168–1174.

    PubMed  CAS  Google Scholar 

  • Katzman, R. (1976). Editorial: The prevalence and malignancy of Alzheimer disease. A major killer. Archives of Neurology, 33, 217–218.

    PubMed  CAS  Google Scholar 

  • Martin, B. K., Meinert, C. L., & Breitner, J. C. (2002). Double placebo design in a prevention trial for Alzheimer’s disease. Controlled Clinical Trials, 23, 93–99.

    Article  PubMed  Google Scholar 

  • McCormick, W. C., Hardy, J., Kukull, W. A., Bowen, J. D., Teri, L., Zitzer, S., et al. (2001). Healthcare utilization and costs in managed care patients with Alzheimer’s disease during the last few years of life. Journal of the American Geriatrics Society, 49, 1156–1160.

    Article  PubMed  CAS  Google Scholar 

  • Montine, T. J., Beal, M. F., Cudkowicz, M. E., Brown, R. H., O’Donnell, H., Margolin, R. A., et al. (1999a). Increased cerebrospinal fluid F2-isoprostane concentration in probable Alzheimer’s disease. Neurology, 52, 562–565.

    PubMed  CAS  Google Scholar 

  • Montine, T. J., Beal, M. F., Robertson, D., Cudkowicz, M. E., Biaggioni, I., O’Donnell, H., et al. (1999b). Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology, 52, 1104–1105.

    PubMed  CAS  Google Scholar 

  • Montine, T. J., Kaye, J. A., Montine, K. S., McFarland, L., Morrow, J. D., & Quinn, J. F. (2001). CSF Ab42, tau, and F2-isoprostane concentrations in patients with Alzheimer’s disease, other dementias, and age-matched controls. Archives of Pathology and Laboratory Medicine, 125, 510–512.

    PubMed  CAS  Google Scholar 

  • Montine, T. J., Markesbery, W. R., Morrow, J. D., & Roberts, L. J. (1998). Cerebrospinal fluid F2-isoprostanes are increased in Alzheimer’s disease. Annals of Neurology, 44, 410–413.

    Article  PubMed  CAS  Google Scholar 

  • Montine, T. J., Markesbery, W. R., Zackert, W., Sanchez, S. C., Roberts, L. J., & Morrow, J. D. (1999c). The magnitude of brain lipid peroxidation correlates with the extent of degeneration but not with density of neuritic plaques or neurofibrillary tangles, or with APOE genotype in Alzheimer’s disease patients. American Journal of Pathology, 155, 863–868.

    PubMed  CAS  Google Scholar 

  • Montine, T. J., Neely, M. D., Quinn, J. F., Beal, M. F., Markesbery, W. R., Roberts, L. J., II, et al. (2002a). Lipid peroxidation in aging brain and Alzheimer’s disease. Free Radical Biology & Medicine, 33, 620–626.

    Article  CAS  Google Scholar 

  • Montine, T. J., Quinn, J. F., Milatovic, D., Silbert, L. C., Dang, T., Sanchez, S., et al. (2002b). Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer’s disease. Annals of Neurology, 52, 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Montine, T. J., Shinobu, L., Montine, K. S., Roberts, L. J., II, Beal, M. F., & Morrow, J. D. (2000). No difference in plasma or urine F2-isoprostanes among patients with Huntington’s disease or Alzheimer’s disease, and controls. Annals of Neurology, 48, 950.

    Article  PubMed  CAS  Google Scholar 

  • Montine, T. J., Sidell, K. S., Crews, B. C., Markesbery, W. R., Marnett, L. J., Roberts, L. J., et al. (1999d). Elevated cerebrospinal fluid prostaglandin E2 levels in patients with probable Alzheimer’s disease. Neurology, 53, 1495–1498.

    PubMed  CAS  Google Scholar 

  • Morris, J. C., & Price, A. L. (2001). Pathologic correlates of nondemented aging, mild cognitive impairment, and early-stage Alzheimer’s disease. Journal of Molecular Neuroscience, 17, 101–118.

    Article  PubMed  CAS  Google Scholar 

  • Morrow, J. D., Hill, K. E., Burk, R. F., Nammour, T. M., Badr, K. F., & Roberts, L. J. (1990). A series of prostaglandin-like compounds produced in vivo in humans by a non-cyclooxygenase, free radical catalyzed mechanism. Proceedings of the National Academy of Sciences of the United States of America, 87, 9383–9387.

    Google Scholar 

  • Morrow, J. D., & Roberts, L. J., II (1994). Mass spectrometry of prostanoids: F2-isoprostanes produced by non-cyclooxygenase free radical catalyzed mechanism. Methods in Enzymology, 233, 163–174.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, R., Doody, R., Kurz, A., Mohs, R., Morris, J., Rabins, P., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1982.

    Google Scholar 

  • Petrovitch, H., White, L. R., Izmirilian, G., Ross, G. W., Havlik, R. J., Markesbery, W., et al. (2000) Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: The HAAS. Honolulu–Asia aging Study. Neurobiology of Aging, 21, 57–62.

    PubMed  CAS  Google Scholar 

  • Porter, N. A., Caldwell, S. E., & Mills, K. A. (1995) Mechanisms of free radical oxidation of unsaturated lipids. Lipids, 30, 277–290.

    Article  PubMed  CAS  Google Scholar 

  • Pratico, D., Barry, O. P., Lawson, J. A., Adiyaman, M., Hwang, S. W., Khanapure, S. P., et al. (1998a). IPF2-alpha-I—an index of lipid peroxidation in humans. Proceedings of the National Academy of Sciences, 95, 3449–3454.

  • Pratico, D., Clack, C. M., Lee, V. M. Y., Trojanowski, J. Q., Rokach, J., & FitzGerald, G. (2000) Increased 8,12-iso-iPF2a-IV in Alzheimer’s disease: Correlation of a noninvasive index of lipid peroxidation with disease severity. Annals of Neurology, 48, 809–812.

    Article  PubMed  CAS  Google Scholar 

  • Pratico, D., Clark, C. M., Liun, F., Rokach, J., Lee, V. Y., & Trojanowski, J. Q. (2002). Increase of brain oxidative stress in mild cognitive impairment: A possible predictor of Alzheimer disease. Archives of Neurology, 59, 972–976.

    Article  PubMed  Google Scholar 

  • Pratico, D., Lee, V. M., Trojanowski, J. Q., Rokach, J., & Fitzgerald, G. A. (1998b). Increased F2-isoprostanes in Alzheimer’s disease: Evidence for enhanced lipid peroxidation in vivo. FASEB Journal, 12, 1777–1784.

    PubMed  CAS  Google Scholar 

  • Price, J. L., Davis, P. B., Morris, J. C., & White, D. L. (1991). The distribution of tangles, plaques and related immunohistochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging, 12, 295–312.

    Article  PubMed  CAS  Google Scholar 

  • Price, J. L., & Morris, J. C. (1999). Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Annals of Neurology, 45, 358–368.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, J. F., Montine, K. S., Moore, M., Morrow, J. D., Kaye, J. A., & Montine, T. J. (2004) Suppression of longitudinal increase in CSF F2-isoprostanes in Alzheimer’s disease. Journal of Alzheimer’s Disease, 6, 93–97.

    PubMed  CAS  Google Scholar 

  • Reich, E. E., Markesbery, W. R., Roberts, L. J., 2nd, Swift, L. L., Morrow, J. D., & Montine, T. (2001) Brain regional quantification of F-ring and D/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. American Journal of Pathology, 158, 293–297.

    PubMed  CAS  Google Scholar 

  • Riley, K. P., Snowdon, D. A., & Markesbery, W. R. (2002). Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: Findings from the nun study. Annals of Neurology, 51, 567–577.

    Article  PubMed  Google Scholar 

  • Schmitt, F. A., Davis, D. G., Wekstein, D. R., Smith, C. D., Ashford, J. W., & Markesbery, W. R. (2000). “Preclinical” AD revisited. Neuropathology of cognitively normal older adults. Neurology, 55, 370–376.

    PubMed  CAS  Google Scholar 

  • Strittmatter, W. J., & Roses A. D. (1995). Apolipoprotein E and Alzheimer’s disease. Proceedings of the National Academy of Sciences, 92, 4725–4727.

  • Tsuang, D. W., & Bird, T. D. (2002). Genetics of dementia. Medical Clinics of North America, 86, 591–614.

    Article  PubMed  CAS  Google Scholar 

  • Tuppo, E. E., Forman, L. J., Spur, B. W., Chan-Ting, R. E., Chopra, A., & Cavalieri, T. A. (2001). Sign of lipid peroxidation as measured in the urine of patients with probable Alzheimer’s disease. Brain Research Bulletin, 54, 565–568.

    Article  PubMed  CAS  Google Scholar 

  • Waddington, E., Croft, K., Clarnette, R., Mori, T., & Martins, R. (1999). Plasma F2-isoprostane levels are increased in Alzheimer’s disease: Evidence of increased oxidative stress in vivo. Alzheimer’s Reports, 2, 277–282.

    Google Scholar 

  • Welch, H. G., Walsh, J. S., & Larson, E. B. (1992). The cost of institutional care in Alzheimer’s disease: Nursing home and hospital use in a prospective cohort. Journal of the American Geriatrics Society, 40, 221–224.

    PubMed  CAS  Google Scholar 

  • White, L., Petrovitch, H., Hardman, J., Nelson, J., Davis, D., Ross, G., et al. (2002). Cerebrovascular pathology and dementia in autopsied Honolulu–Asia Aging Study participants. Annals of the New York Academy of Sciences, 977, 9–23.

    Article  PubMed  Google Scholar 

  • Xuereb, J. H., Brayne, C., Dufouil, C., Gertz, H., Wischik, C., Harrington, C., et al. (2000). Neuropathological findings in the very old. Results from the first 101 brains of a population-based longitudinal study of dementing disorders. Annals of the New York Academy of Sciences, 903, 490–496.

    Article  PubMed  CAS  Google Scholar 

  • Zandi, P. P., Anthony, J. C., Khachaturian, A. S., Stone, S. V., Gustafson, D., Tschanz, J. T., et al. (2004) Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: The Cache County Study. Archives of Neurology, 61, 82–88.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nancy and Buster Alvord Endowment and grants from the NIH (AG05136, AG23801, and AG24011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Montine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montine, T.J., Quinn, J., Kaye, J. et al. F2-Isoprostanes as Biomarkers of Late-onset Alzheimer’s Disease. J Mol Neurosci 33, 114–119 (2007). https://doi.org/10.1007/s12031-007-0044-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0044-1

Keywords

Navigation