Skip to main content

Advertisement

Log in

Development of therapies for autoimmune disease at Stanford: a tale of multiple shots and one goal

  • IMMUNOLOGY AT STANFORD UNIVERSITY
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The title of this contribution on Immunology at Stanford is purposely ambiguous. One goal is the development of safe and effective therapy for autoimmune diseases. Another definition of goal is to score, and this would ultimately mean the development of an approved drug. Indeed, the efforts in my four decades at Stanford, have included the discovery and subsequent development of a monoclonal antibody to block homing to the inflamed brain, leading to natalizumab, an approved therapeutic for two autoimmune diseases: relapsing–remitting MS and for inflammatory bowel disease. Multiple attempts to develop new therapies for autoimmune disease are described here: The trimolecular complex and the immune synapse serve as one major set of targets, with attempts to inhibit particular major histocompatibility molecules, the variable regions of the T cell receptor, and CD4. Other approaches focusing on antigen-specific tolerance include ongoing attempts with tolerizing DNA vaccines in type 1 diabetes. Finally, the repurposing of popular drugs approved for other indications, including statins and inhibitors of angiotensin converting enzyme is under development and showing promise in the clinic, particularly for secondary progressive multiple sclerosis. The milieu within Stanford Immunology has helped to nurture these efforts to translate discoveries in immunology and to take them from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. McDevitt HO, Sela M. Genetic control of the antibody response. I. Demonstration of determinant-specific differences in response to synthetic polypeptide antigens in two strains of inbred mice. J Exp Med. 1965;122(3):517–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. McDevitt HO, Tyan ML. Genetic control of the antibody response in inbred mice. Transfer of response by spleen cells and linkage to the major histocompatibility (H-2) locus. J Exp Med. 1968;128(1):1–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hedrick SM, Cohen DI, Nielsen EA, Davis MM. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature. 1984;308(5955):149–53.

    Article  CAS  PubMed  Google Scholar 

  4. Gallatin WM, Weissman IL, Butcher EC. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature. 1983;304(5921):30–4.

    Article  CAS  PubMed  Google Scholar 

  5. Miller RA, Maloney DG, Warnke R, Levy R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med. 1982;306(9):517–22.

    Article  CAS  PubMed  Google Scholar 

  6. Lifson JD, Reyes GR, McGrath MS, Stein BS, Engleman EG. AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science. 1986;232(4754):1123–7.

    Article  CAS  PubMed  Google Scholar 

  7. Kimoto M, Fathman CG. Antigen-reactive T cell clones. I. Transcomplementing hybrid I-A-region gene products function effectively in antigen presentation. J Exp Med. 1980;152(4):759–70.

    Article  CAS  PubMed  Google Scholar 

  8. Zamvil S, Nelson P, Trotter J, Mitchell D, Knobler R, Fritz R, Steinman L. T cell clones specific for myelin basic protein induce chronic relapsing EAE and demyelination. Nature. 1985;317:355–8.

    Article  CAS  PubMed  Google Scholar 

  9. Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard J. T cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature. 1986;324:258–60.

    Article  CAS  PubMed  Google Scholar 

  10. Ben-Nun A, Wekerle H, Cohen IR. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature. 1981;292(5818):60–1.

    Article  CAS  PubMed  Google Scholar 

  11. Steinman L, Rosenbaum JT, Sriram S, McDevitt HO. In vivo effects of antibodies to immune response gene products: prevention of experimental allergic encephalitis. Proc Natl Acad Sci USA. 1981;78:7111–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Waldor M, Sriram S, McDevitt HO, Steinman L. In vivo therapy with monoclonal anti I-A antibody suppresses immune response to acetylcholine receptor. Proc Natl Acad Sci USA. 1983;80:2713–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Waldor MK, Hardy RR, Hayakawa K, Steinman L, Herzenberg LA, Herzenberg LA. Disappearance and reappearance of B cells following in vivo treatment with monoclonal anti I-A antibodies. Proc Natl Acad Sci USA. 1984;81:2855–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Waldor M, Mitchell D, Kipps J, Herzenberg LA, Steinman L. Importance of immunoglobulin isotype in therapy of EAE with monoclonal anti-CD4 antibody. J Immunol. 1987;139:3660–4.

    CAS  PubMed  Google Scholar 

  15. Alters SE, Steinman L, Oi VT. Comparison of rat and rat-mouse chimeric anti-murine CD4 antibodies in vitro: chimeric antibodies lyse low density CD4 + cells. J Immunol. 1989;142:2018–23.

    CAS  PubMed  Google Scholar 

  16. Jonkers M, van Lambalgen R, Mitchell D, Durham SK, Steinman L. Successful treatment of EAE in rhesus monkeys with MHC class II specific monoclonal antibodies. J Autoimmun. 1988;1:399–414.

    Article  Google Scholar 

  17. Acha-Orbea H, Mitchell DJ, Timmerman L, Wraith DC, Waldor MK, Tausch GS, Zamvil SS, McDevitt HO, Steinman L. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell. 1988;54:263–73.

    Article  CAS  PubMed  Google Scholar 

  18. Oksenberg JR, Stuart S, Begovich AB, Bell R, Erlich H, Steinman L, Bernard CCA. Limited heterogeneity of rearranged T cell receptor transcripts in brains of multiple sclerosis patients. Nature. 1990;345:344–6.

    Article  CAS  PubMed  Google Scholar 

  19. Oksenberg JR, Panzara MA, Begovich AB, Mitchell D, Erlich HA, Murray RS, Shimonkevitz R, Sherritt M, Rothbard J, Bernard CCA, Steinman L. Selection for T cell receptor Vb-Db-Jb gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature. 1993;362:68–70.

    Article  CAS  PubMed  Google Scholar 

  20. http://www.nytimes.com/1990/05/24/us/new-findings-on-nerve-damage-may-help-treat-multiple-sclerosis.html.

  21. Killestein J, Olsson T, Wallström E, Svenningsson A, Khademi M, Blumhardt LD, Fagius J, Hillert J, Landtblom AM, Edenius C, Arfors L, Barkhof F, Polman CH. Antibody-mediated suppression of Vbeta5.2/5.3(+) T cells in multiple sclerosis: results from an MRI-monitored phase II clinical trial. Ann Neurol. 2002;51(4):467–74.

    Article  CAS  PubMed  Google Scholar 

  22. Waldor MK, Hardy R, Herzenberg LA, Herzenberg LA, Lanier L, Sriram S, Lim M, Steinman L. Reversal of EAE with monoclonal antibody to a T cell subset marker (L3T4). Science. 1985;227:415–7.

    Article  CAS  PubMed  Google Scholar 

  23. Alters SE, Sakai K, Steinman L, Oi VT. Mechanisms of anti-CD4-mediated depletion and immunotherapy. A study using a set of chimeric anti-CD4 antibodies. J Immunol. 1990;144(12):4587–92.

    CAS  PubMed  Google Scholar 

  24. Lindsey JW, Hodgkinson S, Mehta R, Siegel RC, Mitchell D, Lim M, Piercy BA, Dorfman L, Enzmann D, Steinman L. Phase I clinical trial of chimeric monoclonal anti-CD4 antibody in multiple sclerosis. Neurology. 1994;44:413–9.

    Article  CAS  PubMed  Google Scholar 

  25. van Oosten BW, Lai M, Hodgkinson S, Barkhof F, Miller DH, Moseley IF, Thompson AJ, Rudge P, McDougall A, McLeod JG, Adèr HJ, Polman CH. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled MR-monitored phase II trial. Neurology. 1997;49(2):351–7.

    Article  PubMed  Google Scholar 

  26. Wraith DC, McDevitt HO, Steinman L, Acha-Orbea H. T cell recognition as the target for immune intervention in autoimmune disease. Cell. 1989;57:709–15.

    Article  CAS  PubMed  Google Scholar 

  27. Wraith DC, Smilek DE, Mitchell DJ, Steinman L, McDevitt HO. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide mediated immunotherapy. Cell. 1989;59:247–55.

    Article  CAS  PubMed  Google Scholar 

  28. Karin N, Mitchell D, Ling N, Brocke S, Steinman L. Reversal of experimental autoimmune encephalomyelitis by a soluble variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of Interferon-_ and TNF-a production. J Exp Med. 1994;180:2227–37.

    Article  CAS  PubMed  Google Scholar 

  29. Kappos L, Comi G, Panitch H, Oger J, Antel J, Conlon P, Steinman L, the APL in Relapsing MS Study Group. Induction of a non-encephalitogenic Th2 autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo controlled, randomized phase II trial. Nat Med. 2000;6(10):1176–82.

    Article  CAS  PubMed  Google Scholar 

  30. Pedotti R, Mitchell D, Wedemeyer J, Karpuj M, Chabas D, Hattab E, Tsai M, Galli SJ, Steinman L. An unexpected version of horror autotoxicus: anaphylactic shock to a self-peptide. Nat Immunol. 2001;2:216–22.

    Article  CAS  PubMed  Google Scholar 

  31. Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B, Eaton J, Antel J, Frank JA, McFarland HF, Martin R. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med. 2000;6(10):1167–75.

    Article  CAS  PubMed  Google Scholar 

  32. Yednock T, Cannon C, Fritz L, Sanchez-Madrid F, Steinman L, Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against a4b1 integrin. Nature. 1992;356:63–6.

    Article  CAS  PubMed  Google Scholar 

  33. Rudick R, Polman C, Clifford D, Miller D, Steinman L. Natalizumab: bench to bedside and beyond. JAMA Neurol. 2013;70:172–82.

    Article  PubMed  Google Scholar 

  34. Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899–910.

    Article  CAS  PubMed  Google Scholar 

  35. Steinman L. The discovery of natalizumab, a potent therapeutic for multiple sclerosis. J Cell Biol. 2012;199:413–6. doi:10.1083/jcb.201207175.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Steinman L. Immunology of relapse and remission in multiple Sclerosis. Annu Rev Immunol. 2014;32:257–81.

  37. Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S, et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N Engl J Med. 2012;366:1870–80.

    Article  CAS  PubMed  Google Scholar 

  38. Ho P, Fontoura P, Ruiz P, Steinman L, Garren H. An immunomodulatory GpG oligonucleotide for the treatment of autoimmunity via the innate and adaptive immune systems. J Immunol. 2003;171:4920–6.

    Article  CAS  PubMed  Google Scholar 

  39. Robinson WH, Fontoura P, Lee BJ, de Vegvar HEN, Tom J, Pedotti R, DiGennaro C, Mitchell DJ, Fong D, Ho PK, Ruiz P, Maverakis E, Stevens D, Bernard CCA, Olsson T, Martin R, Kuchroo VK, van Noort JM, Genain CP, Utz PJ, Garren H, Steinman L. Reverse genomics: protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat Biotechnol. 2003;21:1033–9.

    Article  CAS  PubMed  Google Scholar 

  40. Solvason N, Lou YP, Peters W, Evans E, Martinez J, Ramirez U, Ocampo A, Yun R, Ahmad S, Liu E, Yu L, Eisenbarth G, Leviten M, Steinman L, Garren H. Improved efficacy of a tolerizing DNA vaccine for reversal of hyperglycemia through enhancement of gene expression and localization to intracellular sites. J Immunol. 2008;181:8298–307.

    Article  CAS  PubMed  Google Scholar 

  41. Garren H, Robinson W, Krasulová E, Havrdová E, Nadj C, Selmaj K, Losy J, Nadj I, Radue EW, Kidd BA, Gianettoni J, Tersini K, Utz PJ, Valone F, Steinman L, the BHT-3009 Study Group. Phase 2b trial of a DNA vaccine encoding myelin basic protein in relapsing multiple sclerosis. Ann Neurol. 2008;63(5):611–20.

    Article  CAS  PubMed  Google Scholar 

  42. Steinman L. The road not taken: antigen-specific therapy and neuroinflammatory disease. JAMA Neurol. 2013;1:1–2. doi:10.1001/jamaneurol.2013.3553.

    Google Scholar 

  43. Verge CF, Stenger D, Bonifacio E, Colman PG, Pilcher C, Bingley PJ, Eisenbarth GS. Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: combinatorial islet autoantibody workshop. Diabetes. 1998;47:1857–66.

    Article  CAS  PubMed  Google Scholar 

  44. Roep BO, Solvason N, Gottlieb PA, Abreu JRF, Harrison LC, Eisenbarth GS, Yu L, Leviten M, Hagopian WA, Buse JB, von Herrath M, Quan J, King R, Robinson WH, Utz PJ, Garren H, the BHT 3021 Investigators, Steinman L. Plasmid encoded proinsulin preserves C-peptide while specifically reducing proinsulin specific CD8 T cells in type 1 diabetes. Sci Transl Med. 2013;5(191):191ra82. doi:10.1126/scitranslmed.3006103.

  45. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274:94–6.

    Article  CAS  PubMed  Google Scholar 

  46. Youssef S, Stuve O, Patorroyo J, Ruiz P, Radosevich J, Hur EM, Bravo M, Mitchell D, Sobel RA, Steinman L, Zamvil S. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in CNS autoimmune disease. Nature. 2002;420:78–84.

    Article  CAS  PubMed  Google Scholar 

  47. Dunn SE, Youssef S, Goldstein MJ, Prod’homme T, Weber MS, Zamvil SS, Steinman L. Isoprenoids determine Th1/Th2 fate in pathogenic T cells providing a mechanism for modulation of autoimmunity by atorvastatin. J Exp Med. 2006;203:401–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chataway J Schuerer N, Alsanousi A, et al Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2014;6736(13):62242-4. http://dx.doi.org/10.1016/S0140.

  49. Waubant E, Pelletier D, Mass M, Cohen JA, Kita M, Cross A, Bar-Or A, Vollmer T, Racke M, Stüve O, Schwid S, Goodman A, Kachuck N, Preiningerova J, Weinstock-Guttman B, Calabresi PA, Miller A, Mokhtarani M, Iklé D, Murphy S, Kopetskie H, Ding L, Rosenberg E, Spencer C, Zamvil SS, ITN STAyCIS Study Group, ITN020AI Study Management Team. Randomized controlled trial of atorvastatin in clinically isolated syndrome: the STAyCIS study. Neurology. 2012;78(15):1171–8. doi:10.1212/WNL.0b013e31824f7fdd.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Platten M, Youssef S, Hur EM, Ho PP, Han MH, Lanz TV, Phillips LK, Goldstein MJ, Bhat R, Raine CS, Sobel RA, Steinman L. Blocking angiotensin converting enzyme induces potent regulatory T cells and modulates TH1 and TH17-mediated autoimmunity. Proc Natl Acad Sci USA. 2009;106:14948–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Lanz TV, Ding Z, Ho PP, Luo J, Agrawal AN, Srinagesh H, Axtell R, Zhang H, Platten M, Wyss-Coray T, Steinman L. Angiotensin II sustains brain inflammation in mice via TGF-beta. J Clin Investig. 2010;120(8):2782–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Chabas D, Baranzini S, Mitchell D, Bernard CCA, Rittling S, Denhardt D, Sobel R, Lock C, Karpuj M, Pedotti R, Heller R, Oksenberg J, Steinman L. The influence of the pro-inflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science. 2001;294:1731–5.

    Article  CAS  PubMed  Google Scholar 

  53. Ousman SS, Tomooka BH, Van Noort JM, Wawrousek EF, O’Conner K, Hafler DA, Sobel RA, Robinson WH, Steinman L. Protective and therapeutic role for aB-crystallin in autoimmune demyelination. Nature. 2007;448:474–9.

    Article  CAS  PubMed  Google Scholar 

  54. Kurnellas MP, Adams CM, Sobel RA, Steinman L, Rothbard JR. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation. Sci Transl Med. 2013;5(179):179ra42.

  55. http://www.poetryfoundation.org/poem/171540.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Steinman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinman, L. Development of therapies for autoimmune disease at Stanford: a tale of multiple shots and one goal. Immunol Res 58, 307–314 (2014). https://doi.org/10.1007/s12026-014-8509-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-014-8509-0

Keywords

Navigation