Skip to main content
Log in

TCF1 and β-catenin regulate T cell development and function

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

T cell factor-1 (TCF1) critically regulates T cell development. However, signals that control TCF1 function in developing and mature T cells remain unknown. TCF1 along with β-catenin activates gene transcription and in cooperation with Groucho family of proteins mediates gene repression. It has been established that the β-catenin-dependent gene expression is often downstream of the canonical Wnt signaling pathway. We have genetically manipulated the β-catenin gene and generated mutant mice that have shown an essential role for β-catenin and TCF1 during pre-T cell receptor (TCR) and TCR-dependent stages of T cell development. We have also demonstrated a function for TCF1 and β-catenin downstream of TCR signaling in the differentiation of mature CD4 T cells into T helper lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. van de Wetering M, Oosterwegel M, Dooijes D, Clevers H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 1991;10:123–32.

    PubMed  Google Scholar 

  2. Macdonald BT, Semenov MV, He X. Snapshot: Wnt/beta-catenin signaling. Cell. 2007;131:1204.

    Article  PubMed  CAS  Google Scholar 

  3. Staal FJ, Luis TC, Tiemessen MM. WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol. 2008;8:581–93.

    Article  PubMed  CAS  Google Scholar 

  4. Graham TA, Clements WK, Kimelman D, Xu W. The crystal structure of the beta-catenin/ICAT complex reveals the inhibitory mechanism of ICAT. Mol Cell. 2002;10:563–71.

    Article  PubMed  CAS  Google Scholar 

  5. Daniels DL, Weis WI. ICAT inhibits beta-catenin binding to Tcf/Lef-family transcription factors and the general coactivator p300 using independent structural modules. Mol Cell. 2002;10:573–84.

    Article  PubMed  CAS  Google Scholar 

  6. Gottardi CJ, Gumbiner BM. Role for ICAT in beta-catenin-dependent nuclear signaling and cadherin functions. Am J Physiol Cell Physiol. 2004;286:C747–56.

    Article  PubMed  CAS  Google Scholar 

  7. Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P, et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature. 1998;395:608–12.

    Article  PubMed  CAS  Google Scholar 

  8. Xu M, Sharma A, Wiest DL, Sen JM. Pre-TCR-induced beta-catenin facilitates traversal through beta-selection. J Immunol. 2009;182:751–8.

    Article  PubMed  CAS  Google Scholar 

  9. Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM. Deletion of beta-catenin impairs T cell development. Nat Immunol. 2003;4:1177–82.

    Article  PubMed  CAS  Google Scholar 

  10. Ciofani M, Zuniga-Pflucker JC. A survival guide to early T cell development. Immunol Res. 2006;34:117–32.

    Article  PubMed  CAS  Google Scholar 

  11. Aifantis I, Mandal M, Sawai K, Ferrando A, Vilimas T. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol Rev. 2006;209:159–69.

    Article  PubMed  CAS  Google Scholar 

  12. Schilham MW, Wilson A, Moerer P, Benaissa-Trouw BJ, Cumano A, Clevers HC. Critical involvement of Tcf-1 in expansion of thymocytes. J Immunol. 1998;161:3984–91.

    PubMed  CAS  Google Scholar 

  13. Verbeek S, Izon D, Hofhuis F, Robanus-Maandag E, te Riele H, van de Wetering M, et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature. 1995;374:70–4.

    Article  PubMed  CAS  Google Scholar 

  14. Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R. Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity. 1998;8:11–20.

    Article  PubMed  CAS  Google Scholar 

  15. Staal FJ, Meeldijk J, Moerer P, Jay P, van de Weerdt BC, Vainio S, et al. Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. Eur J Immunol. 2001;31:285–93.

    Article  PubMed  CAS  Google Scholar 

  16. Weerkamp F, Baert MR, Naber BA, Koster EE, de Haas EF, Atkuri KR, et al. Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc Natl Acad Sci USA. 2006;103:3322–6.

    Article  PubMed  CAS  Google Scholar 

  17. Mulroy T, McMahon JA, Burakoff SJ, McMahon AP, Sen J. Wnt-1 and Wnt-4 regulate thymic cellularity. Eur J Immunol. 2002;32:967–71.

    Article  PubMed  CAS  Google Scholar 

  18. Luis TC, Weerkamp F, Naber BA, Baert MR, de Haas EF, Nikolic T, et al. Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation. Blood. 2009;113:546–54.

    Article  PubMed  CAS  Google Scholar 

  19. Pongracz JE, Parnell SM, Jones T, Anderson G, Jenkinson EJ. Overexpression of ICAT highlights a role for catenin-mediated canonical Wnt signalling in early T cell development. Eur J Immunol. 2006;36:2376–83.

    Article  PubMed  CAS  Google Scholar 

  20. Hossain MZ, Yu Q, Xu M, Sen JM. ICAT expression disrupts beta-catenin-TCF interactions and impairs survival of thymocytes and activated mature T cells. Int Immunol. 2008;20:925–35.

    Article  PubMed  CAS  Google Scholar 

  21. Ioannidis V, Beermann F, Clevers H, Held W. The beta-catenin–TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival. Nat Immunol. 2001;2:691–7.

    Article  PubMed  CAS  Google Scholar 

  22. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell. 2007;12:528–41.

    Article  PubMed  CAS  Google Scholar 

  23. Cobas M, Wilson A, Ernst B, Mancini SJ, MacDonald HR, Kemler R, et al. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J Exp Med. 2004;199:221–9.

    Article  PubMed  CAS  Google Scholar 

  24. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142–9.

    Article  PubMed  CAS  Google Scholar 

  25. Koch U, Wilson A, Cobas M, Kemler R, Macdonald HR, Radtke F. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood. 2008;111:160–4.

    Article  PubMed  CAS  Google Scholar 

  26. Gounari F, Aifantis I, Khazaie K, Hoeflinger S, Harada N, Taketo MM, et al. Somatic activation of beta-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat Immunol. 2001;2:863–9.

    Article  PubMed  CAS  Google Scholar 

  27. Gounari F, Chang R, Cowan J, Guo Z, Dose M, Gounaris E, et al. Loss of adenomatous polyposis coli gene function disrupts thymic development. Nat Immunol. 2005;6:800–9.

    Article  PubMed  CAS  Google Scholar 

  28. Xu M, Sharma A, Hossain MZ, Wiest DL, Sen JM. Sustained expression of pre-TCR induced beta-catenin in post-beta-selection thymocytes blocks T cell development. J Immunol. 2009;182:759–65.

    Article  PubMed  CAS  Google Scholar 

  29. Polakis P. The oncogenic activation of beta-catenin. Curr Opin Genet Dev. 1999;9:15–21.

    Article  PubMed  CAS  Google Scholar 

  30. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–51.

    PubMed  CAS  Google Scholar 

  31. Guo Z, Dose M, Kovalovsky D, Chang R, O’Neil J, Look AT, et al. Beta-catenin stabilization stalls the transition from double-positive to single-positive stage and predisposes thymocytes to malignant transformation. Blood. 2007;109:5463–72.

    Article  PubMed  CAS  Google Scholar 

  32. Xu M, Yu Q, Subrahmanyam R, Difilippantonio MJ, Ried T, Sen JM. Beta-catenin expression results in p53-independent DNA damage and oncogene-induced senescence in prelymphomagenic thymocytes in vivo. Mol Cell Biol. 2008;28:1713–23.

    Article  PubMed  CAS  Google Scholar 

  33. Liao MJ, Zhang XX, Hill R, Gao J, Qumsiyeh MB, Nichols W, et al. No requirement for V(D)J recombination in p53-deficient thymic lymphoma. Mol Cell Biol. 1998;18:3495–501.

    PubMed  CAS  Google Scholar 

  34. Xu Y, Sen J. Beta-catenin expression in thymocytes accelerates thymic involution. Eur J Immunol. 2003;33:12–8.

    Article  PubMed  Google Scholar 

  35. Ashton-Rickardt PG, Tonegawa S. A differential-avidity model for T-cell selection. Immunol Today. 1994;15:362–6.

    Article  PubMed  CAS  Google Scholar 

  36. Starr TK, Jameson SC, Hogquist KA. Positive and negative selection of T cells. Annu Rev Immunol. 2003;21:139–76.

    Article  PubMed  CAS  Google Scholar 

  37. Nossal GJ. Negative selection of lymphocytes. Cell. 1994;76:229–39.

    Article  PubMed  CAS  Google Scholar 

  38. Fowlkes BJ, Schweighoffer E. Positive selection of T cells. Curr Opin Immunol. 1995;7:188–95.

    Article  PubMed  CAS  Google Scholar 

  39. Jameson SC, Hogquist KA, Bevan MJ. Positive selection of thymocytes. Annu Rev Immunol. 1995;13:93–126.

    Article  PubMed  CAS  Google Scholar 

  40. Bosselut R. CD4/CD8-lineage differentiation in the thymus: from nuclear effectors to membrane signals. Nat Rev Immunol. 2004;4:529–40.

    Article  PubMed  CAS  Google Scholar 

  41. Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol. 2002;2:309–22.

    Article  PubMed  CAS  Google Scholar 

  42. Singer A, Adoro S, Park JH. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat Rev Immunol. 2008;8:788–801.

    Article  PubMed  CAS  Google Scholar 

  43. Yu Q, Erman B, Bhandoola A, Sharrow SO, Singer A. In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into functionally mature CD8+ T cells. J Exp Med. 2003;197:475–87.

    Article  PubMed  CAS  Google Scholar 

  44. Yu Q, Sen JM. Beta-catenin regulates positive selection of thymocytes but not lineage commitment. J Immunol. 2007;178:5028–34.

    PubMed  CAS  Google Scholar 

  45. Mulroy T, Xu Y, Sen JM. Beta-Catenin expression enhances generation of mature thymocytes. Int Immunol. 2003;15:1485–94.

    Article  PubMed  CAS  Google Scholar 

  46. Lucas B, Vasseur F, Penit C. Production, selection, and maturation of thymocytes with high surface density of TCR. J Immunol. 1994;153:53–62.

    PubMed  CAS  Google Scholar 

  47. Yu Q, Xu M, Sen JM. Beta-catenin enhances IL-7 receptor signaling in thymocytes during positive selection. J Immunol. 2007;179:126–31.

    PubMed  CAS  Google Scholar 

  48. Huang Z, Xie H, Ioannidis V, Held W, Clevers H, Sadim MS, et al. Transcriptional regulation of CD4 gene expression by T cell factor-1/beta-catenin pathway. J Immunol. 2006;176:4880–7.

    PubMed  CAS  Google Scholar 

  49. Xie H, Huang Z, Sadim MS, Sun Z. Stabilized beta-catenin extends thymocyte survival by up-regulating Bcl-xL. J Immunol. 2005;175:7981–8.

    PubMed  CAS  Google Scholar 

  50. Kovalovsky D, Yu Y, Dose M, Emmanouilidou A, Konstantinou T, Germar K, et al. Beta-catenin/Tcf determines the outcome of thymic selection in response to alphabetaTCR signaling. J Immunol. 2009;183:3873–84.

    Article  PubMed  CAS  Google Scholar 

  51. Glimcher LH, Murphy KM. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 2000;14:1693–711.

    PubMed  CAS  Google Scholar 

  52. Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol. 2002;2:933–44.

    Article  PubMed  CAS  Google Scholar 

  53. Corthay A. A three-cell model for activation of naive T helper cells. Scand J Immunol. 2006;64:93–6.

    Article  PubMed  CAS  Google Scholar 

  54. Ansel KM, Djuretic I, Tanasa B, Rao A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu Rev Immunol. 2006;24:607–56.

    Article  PubMed  CAS  Google Scholar 

  55. Schmitz J, Thiel A, Kuhn R, Rajewsky K, Muller W, Assenmacher M, et al. Induction of interleukin 4 (IL-4) expression in T helper (Th) cells is not dependent on IL-4 from non-Th cells. J Exp Med. 1994;179:1349–53.

    Article  PubMed  CAS  Google Scholar 

  56. McGeachy MJ, Cua DJ. Th17 cell differentiation: the long and winding road. Immunity. 2008;28:445–53.

    Article  PubMed  CAS  Google Scholar 

  57. Stockinger B, Veldhoen M. Differentiation and function of Th17 T cells. Curr Opin Immunol. 2007;19:281–6.

    Article  PubMed  CAS  Google Scholar 

  58. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  PubMed  CAS  Google Scholar 

  59. Lee YK, Mukasa R, Hatton RD, Weaver CT. Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol. 2009;21:274–80.

    Article  PubMed  CAS  Google Scholar 

  60. Staal FJ, Burgering BM, van de Wetering M, Clevers HC. Tcf-1-mediated transcription in T lymphocytes: differential role for glycogen synthase kinase-3 in fibroblasts and T cells. Int Immunol. 1999;11:317–23.

    Article  PubMed  CAS  Google Scholar 

  61. Prieve MG, Waterman ML. Nuclear localization and formation of beta-catenin-lymphoid enhancer factor 1 complexes are not sufficient for activation of gene expression. Mol Cell Biol. 1999;19:4503–15.

    PubMed  CAS  Google Scholar 

  62. Yu Q, Sharma A, Oh SY, Moon HG, Hossain MZ, Salay TM, et al. T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-gamma. Nat Immunol. 2009;10:992–9.

    Article  PubMed  CAS  Google Scholar 

  63. Asnagli H, Afkarian M, Murphy KM. Cutting edge: identification of an alternative GATA-3 promoter directing tissue-specific gene expression in mouse and human. J Immunol. 2002;168:4268–71.

    PubMed  CAS  Google Scholar 

  64. Ding Y, Shen S, Lino AC, Curotto de Lafaille MA, Lafaille JJ. Beta-catenin stabilization extends regulatory T cell survival and induces anergy in nonregulatory T cells. Nat Med. 2008;14:162–9.

    Article  PubMed  CAS  Google Scholar 

  65. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat Med. 2009;15:808–13.

    Article  PubMed  CAS  Google Scholar 

  66. Wu B, Crampton SP, Hughes CC. Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity. 2007;26:227–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Intramural Research Program of the National Institute on Aging at the NIH and in part by an appointment to the Oak Ridge Institute for Science and Education’s Research Associates Program at the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Misra Sen.

Additional information

Qing Yu and Archna Sharma contributed to the writing equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Sharma, A. & Sen, J.M. TCF1 and β-catenin regulate T cell development and function. Immunol Res 47, 45–55 (2010). https://doi.org/10.1007/s12026-009-8137-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8137-2

Keywords

Navigation