Skip to main content
Log in

Automated Axon Tracking of 3D Confocal Laser Scanning Microscopy Images Using Guided Probabilistic Region Merging

  • Published:
Neuroinformatics Aims and scope Submit manuscript

An Erratum to this article was published on 08 January 2009

Abstract

This paper presents a new algorithm for extracting the centerlines of the axons from a 3D data stack collected by a confocal laser scanning microscope. Recovery of neuronal structures from such datasets is critical for quantitatively addressing a range of neurobiological questions such as the manner in which the branching pattern of motor neurons change during synapse elimination. Unfortunately, the data acquired using fluorescence microscopy contains many imaging artifacts, such as blurry boundaries and non-uniform intensities of fluorescent radiation. This makes the centerline extraction difficult. We propose a robust segmentation method based on probabilistic region merging to extract the centerlines of individual axons with minimal user interaction. The 3D model of the extracted axon centerlines in three datasets is presented in this paper. The results are validated with the manual tracking results while the robustness of the algorithm is compared with the published repulsive snake algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abramoff, M. D., Magelhaes, P. J., & Ram, S. J. (2004). Image processing with Image. Journal of Biophotonics International, 11(7), 36–42.

    Google Scholar 

  • Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N., et al. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine, 6(2), 171–187.

    Article  PubMed  Google Scholar 

  • Barrett, W. A., & Mortensen, E. N. (1997). Interactive live-wire boundary extraction. Medical Image Analysis, 1(4), 331–341.

    Article  PubMed  CAS  Google Scholar 

  • Cai, H., Xu, X., Lu, J., Lichtman, J. W., Yung, S. P., & Wong, S. T. (2006). Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks. NeuroImage, 32(4), 1608–1620.

    Article  PubMed  Google Scholar 

  • Can, A., Shen, H., Turner, J. N., Tanenbaum, H. L., & Roysam, B. (1999). Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithm. IEEE Transactions on Information Technology in Biomedicine, 3(2), 125–138.

    Article  PubMed  CAS  Google Scholar 

  • Carmona, R. A., & Zhong, S. (1998). Adaptive smoothing respecting feature directions. IEEE Transactions on Image Processing, 7(3), 353–358.

    Article  PubMed  CAS  Google Scholar 

  • Debeir, O., Van Ham, P., Kiss, R., & Decaestecker, C. (2005). Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes. IEEE Transactions on Medical Imaging, 24(6), 697–711.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3, 32–57.

    Google Scholar 

  • Fiala, J. C. (2005). Reconstruct: A free editor for serial section microscopy. Journal of Microscopy, 218(1), 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, R., & Woods, R. (1992). Digital image processing (2nd edn.). Addison Wesley, pp. 617–626.

  • Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Kasthuri, N., & Lichtman, J. W. (2003). The role of neuronal identity in synaptic competition. Letters to Nature, 424(6947), 426–430.

    Article  CAS  Google Scholar 

  • Keller-Peck, C. R., Walsh, M. K., Gan, W. B., Feng, G., Sanes, J. R., & Lichtman, J. W. (2001). Asynchronous synapse elimination in neonatal motor units: Studies using GFP transgenic mice. Neuron, 31(3), 381–394.

    Article  PubMed  CAS  Google Scholar 

  • Li, F., Zhou, X., & Wong, S. T. C. (2007). An automated feedback system with the hybrid model of scoring and classification for solving over-segmentation problems in RNAi high content screening. Journal of Microscopy, 226(2), 121–132.

    Article  PubMed  CAS  Google Scholar 

  • Meijering, E., Jacob, M., Sarria, J.-C. F., Steiner, P., Hirling, H., & Unser, M. (2004). Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A, 58A(2), 167–176.

    Article  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9, 62–66.

    Article  Google Scholar 

  • Streekstra, G. J., & van Pelt, J. (2002). Analysis of tubular structures in three-dimensional confocal images. Network: Computer Neural System, 13, 381–395.

    Article  Google Scholar 

  • Tschirren, J., Hoffman, E. A., McLennan, G., & Sonka, M. (2005) Intrathoracic airway trees: Segmentation and airway morphology analysis from low-dose CT scans. IEEE Transactions on Medical Imaging, 24(12), 1529–1539.

    Article  PubMed  Google Scholar 

  • Wang, M., Zhou, X., King, R. W., & Wong, S. T. C. (2007). Context based mixture model for cell phase identification in automated fluorescence microscopy. BMC Bioinformatics, 30, 8–32.

    Google Scholar 

  • Xiong, G., Zhou, X., & Ji, L. (2006). Automated segmentation of drosophila RNAi fluorescence cellular images using deformable models. IEEE Transactions on Circuits and Systems I, 53(11), 2415–2424.

    Article  Google Scholar 

  • Zhang, Y., Zhou, X., Degterev, A., Lipinski, M., Adjeroh, D., Yuan J., et al. (2006). A novel tracing algorithm for high throughput imaging screening of neuron-based assays. Journal of Neuroscience Methods, 160(1), 149–162.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Mr. H. M. Cai for the help in testing the data sets using the program of Repulsive Snake Model. They also would like to thank research members of the Life Science Imaging Group of the Center for Bioinformatics (CBI), Harvard Center for Neurodegeneration and Repair (HCNR) and Brigham and Women’s Hospital, Harvard Medical School, for their technical comments. The research is funded by the HCNR, Harvard Medical School (Wong).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. C. Wong.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12021-008-9038-6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, R., Zhou, X., Miller, E. et al. Automated Axon Tracking of 3D Confocal Laser Scanning Microscopy Images Using Guided Probabilistic Region Merging. Neuroinform 5, 189–203 (2007). https://doi.org/10.1007/s12021-007-0013-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-007-0013-4

Keywords

Navigation