Skip to main content

Advertisement

Log in

Osteocyte Communication with the Kidney Via the Production of FGF23: Remote Control of Phosphate Homeostasis

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Osteocytes have emerged as the principal controlling cell type in bone. It is now clear that osteocytes communicate with each other, with other key bone cell types and also function as a vital endocrine organ. In this review, we will focus on one such humoral factor produced by osteocytes, fibroblast growth factor 23 and the involvement of this key phosphate-regulating hormone in human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26(2):229–38. doi:10.1002/jbmr.320.

    CAS  PubMed  Google Scholar 

  2. Atkins G, Findlay D. Osteocyte regulation of bone mineral: a little give and take. Osteoporos Int. 2012;8:2067–79. doi:10.1007/s00198-012-1915-z.

    Google Scholar 

  3. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Fukumoto S, Yamashita T. FGF23 is a hormone-regulating phosphate metabolism—unique biological characteristics of FGF23. Bone. 2007;40(5):1190–5. doi:10.1016/j.bone.2006.12.062.

    CAS  PubMed  Google Scholar 

  5. Rowe PS. The chicken or the egg: PHEX, FGF23 and SIBLINGs unscrambled. Cell Biochem Funct. 2012;30(5):355–75. doi:10.1002/cbf.2841.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Feng JQ, Clinkenbeard EL, Yuan B, White KE, Drezner MK. Osteocyte regulation of phosphate homeostasis and bone mineralization underlies the pathophysiology of the heritable disorders of rickets and osteomalacia. Bone. 2013;54(2):213–21. doi:10.1016/j.bone.2013.01.046.

    CAS  PubMed  Google Scholar 

  7. Quarles LD. A systems biology preview of the relationships between mineral and metabolic complications in chronic kidney disease. Semin Nephrol. 2013;33(2):130–42. doi:10.1016/j.semnephrol.2012.12.014.

    CAS  PubMed  Google Scholar 

  8. Consortium TA. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26(3):345–8. doi:10.1038/81664.

    Google Scholar 

  9. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA. 2001;98(11):6500–5.

    CAS  PubMed  Google Scholar 

  10. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429–35. doi:10.1359/JBMR.0301264.

    CAS  PubMed  Google Scholar 

  11. Segawa H, Kawakami E, Kaneko I, Kuwahata M, Ito M, Kusano K, et al. Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflug Arch. 2003;446(5):585–92. doi:10.1007/s00424-003-1084-1.

    CAS  Google Scholar 

  12. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Investig. 2004;113(4):561–8.

    CAS  PubMed  Google Scholar 

  13. Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004;23(7):421–32. doi:10.1016/j.matbio.2004.09.007.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Shimada T, Urakawa I, Yamazaki Y, Hasegawa H, Hino R, Yoneya T, et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem Biophys Res Commun. 2004;314(2):409–14. doi:10.1016/j.bbrc.2003.12.102.

    CAS  PubMed  Google Scholar 

  15. Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000;277(2):494–8. doi:10.1006/bbrc2000.3696.

    CAS  PubMed  Google Scholar 

  16. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4. doi:10.1038/nature05315.

    CAS  PubMed  Google Scholar 

  17. Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282(37):26687–95. doi:10.1074/jbc.M704165200.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Imura A, Tsuji Y, Murata M, Maeda R, Kubota K, Iwano A, et al. Alpha-Klotho as a regulator of calcium homeostasis. Science. 2007;316(5831):1615–8. doi:10.1126/science.1135901.

    CAS  PubMed  Google Scholar 

  19. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51. doi:10.1038/36285.

    CAS  PubMed  Google Scholar 

  20. Riminucci M, Collins MT, Fedarko NS, Cherman N, Corsi A, White KE, et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Investig. 2003;112(5):683–92. doi:10.1172/JCI200318399.

    CAS  PubMed  Google Scholar 

  21. Ubaidus S, Li M, Sultana S, de Freitas PH, Oda K, Maeda T, et al. FGF23 is mainly synthesized by osteocytes in the regularly distributed osteocytic lacunar canalicular system established after physiological bone remodeling. J Electron Microsc (Tokyo). 2009;58(6):381–92. doi:10.1093/jmicro/dfp032.

    CAS  Google Scholar 

  22. Woo SM, Rosser J, Dusevich V, Kalajzic I, Bonewald LF. Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J Bone Miner Res. 2011;26(11):2634–46. doi:10.1002/jbmr.465.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology. 2002;143(8):3179–82.

    CAS  PubMed  Google Scholar 

  24. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab. 2002;87(11):4957–60.

    CAS  PubMed  Google Scholar 

  25. Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med. 2003;348(17):1656–63. doi:10.1056/NEJMoa020881.

    CAS  PubMed  Google Scholar 

  26. Imel EA, Hui SL, Econs MJ. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J Bone Miner Res. 2007;22(4):520–6. doi:10.1359/jbmr.070107.

    CAS  PubMed  Google Scholar 

  27. Farrow EG, Yu X, Summers LJ, Davis SI, Fleet JC, Allen MR, et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci USA. 2011;108(46):E1146–55. doi:10.1073/pnas.1110905108.

    CAS  PubMed  Google Scholar 

  28. Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, Econs MJ. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab. 2011;96(11):3541–9. doi:10.1210/jc.2011-1239.

    CAS  PubMed  Google Scholar 

  29. Burnett CH, Dent CE, Harper C, Warland BJ. Vitamin D-resistant rickets. Analysis of twenty-four pedigrees with hereditary and sporadic cases. Am J Med. 1964;36:222–32.

    CAS  PubMed  Google Scholar 

  30. Consortium TH. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet. 1995;11(2):130–6. doi:10.1038/ng1095-130.

    Google Scholar 

  31. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology. 2005;146(12):5358–64. doi:10.1210/en.2005-0777.

    CAS  PubMed  Google Scholar 

  32. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006;38(11):1248–50.

    CAS  PubMed  Google Scholar 

  34. Feng JQ, Huang H, Lu Y, Ye L, Xie Y, Tsutsui TW, et al. The dentin matrix protein 1 (Dmp1) is specifically expressed in mineralized, but not soft, tissues during development. J Dent Res. 2003;82(10):776–80.

    CAS  PubMed  Google Scholar 

  35. Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86(2):267–72. doi:10.1016/j.ajhg.2010.01.006.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, Chalifa-Caspi V, et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet. 2010;86(2):273–8. doi:10.1016/j.ajhg.2010.01.010.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Rutsch F, Ruf N, Vaingankar S, Toliat MR, Suk A, Hohne W, et al. Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet. 2003;34(4):379–81. doi:10.1038/ng1221.

    CAS  PubMed  Google Scholar 

  38. Saito T, Shimizu Y, Hori M, Taguchi M, Igarashi T, Fukumoto S, et al. A patient with hypophosphatemic rickets and ossification of posterior longitudinal ligament caused by a novel homozygous mutation in ENPP1 gene. Bone. 2011;49(4):913–6. doi:10.1016/j.bone.2011.06.029.

    CAS  PubMed  Google Scholar 

  39. Mehta P, Mitchell A, Tysoe C, Caswell R, Owens M, Vincent T. Novel compound heterozygous mutations in ENPP1 cause hypophosphataemic rickets with anterior spinal ligament ossification. Rheumatology (Oxford). 2012;. doi:10.1093/rheumatology/kes089.

    Google Scholar 

  40. Nurnberg P, Thiele H, Chandler D, Hohne W, Cunningham ML, Ritter H, et al. Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nat Genet. 2001;28(1):37–41. doi:10.1038/88236.

    CAS  PubMed  Google Scholar 

  41. Pendleton A, Johnson MD, Hughes A, Gurley KA, Ho AM, Doherty M, et al. Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet. 2002;71(4):933–40. doi:10.1086/343054.

    PubMed Central  PubMed  Google Scholar 

  42. Morava E, Kuhnisch J, Drijvers JM, Robben JH, Cremers C, van Setten P, et al. Autosomal recessive mental retardation, deafness, ankylosis, and mild hypophosphatemia associated with a novel ANKH mutation in a consanguineous family. J Clin Endocrinol Metab. 2011;96(1):E189–98. doi:10.1210/jc.2010-1539.

    CAS  PubMed  Google Scholar 

  43. Chen IP, Wang L, Jiang X, Aguila HL, Reichenberger EJ. A Phe377del mutation in ANK leads to impaired osteoblastogenesis and osteoclastogenesis in a mouse model for craniometaphyseal dysplasia (CMD). Hum Mol Genet. 2011;20(5):948–61. doi:10.1093/hmg/ddq541.

    CAS  PubMed  Google Scholar 

  44. Rafaelsen SH, Raeder H, Fagerheim AK, Knappskog P, Carpenter TO, Johansson S, et al. Exome sequencing reveals FAM20c mutations associated with FGF23-related hypophosphatemia, dental anomalies and ectopic calcification. J Bone Miner Res. 2013;. doi:10.1002/jbmr.1850.

    PubMed  Google Scholar 

  45. Wang X, Wang S, Li C, Gao T, Liu Y, Rangiani A, et al. Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. PLoS Genet. 2012;8(5):e1002708. doi:10.1371/journal.pgen.1002708.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Simpson MA, Hsu R, Keir LS, Hao J, Sivapalan G, Ernst LM, et al. Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development. Am J Hum Genet. 2007;81(5):906–12. doi:10.1086/522240.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Brown WW, Juppner H, Langman CB, Price H, Farrow EG, White KE, et al. Hypophosphatemia with elevations in serum fibroblast growth factor 23 in a child with Jansen’s metaphyseal chondrodysplasia. J Clin Endocrinol Metab. 2009;94(1):17–20. doi:10.1210/jc.2008-0220.

    CAS  PubMed  Google Scholar 

  48. Rhee Y, Bivi N, Farrow E, Lezcano V, Plotkin LI, White KE, et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone. 2011;49(4):639–43. doi:10.1016/j.bone.2011.06.025.

    Google Scholar 

  49. Yamashita H, Yamashita T, Miyamoto M, Shigematsu T, Kazama JJ, Shimada T, et al. Fibroblast growth factor (FGF)-23 in patients with primary hyperparathyroidism. Eur J Endocrinol. 2004;151(1):55–60.

    CAS  PubMed  Google Scholar 

  50. Burnett-Bowie SM, Henao MP, Dere ME, Lee H, Leder BZ. Effects of hPTH(1-34) infusion on circulating serum phosphate, 1,25-dihydroxyvitamin D, and FGF23 levels in healthy men. J Bone Miner Res. 2009;24(10):1681–5. doi:10.1359/jbmr.090406.

    PubMed  Google Scholar 

  51. Lupp A, Klenk C, Rocken C, Evert M, Mawrin C, Schulz S. Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. Eur J Endocrinol. 2010;162(5):979–86. doi:10.1530/EJE-09-0821.

    CAS  PubMed  Google Scholar 

  52. White KE, Cabral JM, Davis SI, Fishburn T, Evans WE, Ichikawa S, et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am J Hum Genet. 2005;76(2):361–7. doi:10.1086/427956.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 2011;25(8):2551–62. doi:10.1096/fj.10-177816.

    CAS  PubMed  Google Scholar 

  54. Wohrle S, Bonny O, Beluch N, Gaulis S, Stamm C, Scheibler M, et al. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. J Bone Miner Res. 2011;26(10):2486–97. doi:10.1002/jbmr.478.

    CAS  PubMed  Google Scholar 

  55. Wu AL, Feng B, Chen MZ, Kolumam G, Zavala-Solorio J, Wyatt SK, et al. Antibody-mediated activation of FGFR1 induces FGF23 production and hypophosphatemia. PLoS One. 2013;8(2):e57322. doi:10.1371/journal.pone.0057322.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci USA. 2008;105(9):3455–60. doi:10.1073/pnas.0712361105.

    CAS  PubMed  Google Scholar 

  57. Smith RC, O’Bryan LM, Farrow EG, Summers LJ, Clinkenbeard EL, Roberts JL, et al. Circulating alphaKlotho influences phosphate handling by controlling FGF23 production. J Clin Investig. 2012;122(12):4710–5. doi:10.1172/JCI64986.

    CAS  PubMed  Google Scholar 

  58. Ito N, Atkins GJ, Findlay DM. eLetters for [Circulating alphaKlotho influences phosphate handling by controlling FGF23 production]. J Clin Investig. 2012. [Epub only http://www.jci.org/eletters/view/64986#sec1].

  59. Dent CE, Gertner JM. Hypophosphataemic osteomalacia in fibrous dysplasia. Q J Med. 1976;45(179):411–20.

    CAS  PubMed  Google Scholar 

  60. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N Engl J Med. 1991;325(24):1688–95. doi:10.1056/NEJM199112123252403.

    CAS  PubMed  Google Scholar 

  61. Jiang Y, Xia WB, Xing XP, Silva BC, Li M, Wang O, et al. Tumor-induced osteomalacia: an important cause of adult-onset hypophosphatemic osteomalacia in China: report of 39 cases and review of the literature. J Bone Miner Res. 2012;27(9):1967–75. doi:10.1002/jbmr.1642.

    PubMed  Google Scholar 

  62. Schouten BJ, Doogue MP, Soule SG, Hunt PJ. Iron polymaltose-induced FGF23 elevation complicated by hypophosphataemic osteomalacia. Ann Clin Biochem. 2009;46(Pt 2):167–9. doi:10.1258/acb.2008.008151.

    PubMed  Google Scholar 

  63. Schouten BJ, Hunt PJ, Livesey JH, Frampton CM, Soule SG. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab. 2009;94(7):2332–7. doi:10.1210/jc.2008-2396.

    CAS  PubMed  Google Scholar 

  64. Shimizu Y, Tada Y, Yamauchi M, Okamoto T, Suzuki H, Ito N, et al. Hypophosphatemia induced by intravenous administration of saccharated ferric oxide: another form of FGF23-related hypophosphatemia. Bone. 2009;45(4):814–6. doi:10.1016/j.bone.2009.06.017.

    CAS  PubMed  Google Scholar 

  65. Prentice A, Ceesay M, Nigdikar S, Allen SJ, Pettifor JM. FGF23 is elevated in Gambian children with rickets. Bone. 2008;42(4):788–97. doi:10.1016/j.bone.2007.11.014.

    CAS  PubMed  Google Scholar 

  66. Braithwaite V, Bruggraber SF, Prentice A. Intact fibroblast growth factor 23 and fragments in plasma from Gambian children. Osteoporos Int. 2013;24(3):1121–4. doi:10.1007/s00198-012-2029-3.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Braithwaite V, Jarjou LM, Goldberg GR, Prentice A. Iron status and fibroblast growth factor-23 in Gambian children. Bone. 2012;50(6):1351–6. doi:10.1016/j.bone.2012.03.010.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Wolf M, Koch TA, Bregman DB. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res. 2013;. doi:10.1002/jbmr.1923.

    PubMed  Google Scholar 

  69. Ito N, Fukumoto S, Takeuchi Y, Yasuda T, Hasegawa Y, Takemoto F, et al. Comparison of two assays for fibroblast growth factor (FGF)-23. J Bone Miner Metab. 2005;23(6):435–40. doi:10.1007/s00774-005-0625-4.

    CAS  PubMed  Google Scholar 

  70. Imel EA, Peacock M, Pitukcheewanont P, Heller HJ, Ward LM, Shulman D, et al. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia. J Clin Endocrinol Metab. 2006;91(6):2055–61. doi:10.1210/jc.2005-2105.

    CAS  PubMed  Google Scholar 

  71. Endo I, Fukumoto S, Ozono K, Namba N, Tanaka H, Inoue D, et al. Clinical usefulness of measurement of fibroblast growth factor 23 (FGF23) in hypophosphatemic patients: proposal of diagnostic criteria using FGF23 measurement. Bone. 2008;42(6):1235–9. doi:10.1016/j.bone.2008.02.014.

    Google Scholar 

  72. Aono Y, Hasegawa H, Yamazaki Y, Shimada T, Fujita T, Yamashita T, et al. Anti-FGF-23 neutralizing antibodies ameliorate muscle weakness and decreased spontaneous movement of Hyp mice. J Bone Miner Res. 2011;26(4):803–10. doi:10.1002/jbmr.275.

    CAS  PubMed  Google Scholar 

  73. Wohrle S, Henninger C, Bonny O, Thuery A, Beluch N, Hynes NE, et al. Pharmacological inhibition of FGFR signaling ameliorates FGF23-mediated hypophosphatemic rickets. J Bone Miner Res. 2012;. doi:10.1002/jbmr.1810.

    Google Scholar 

  74. Lyles KW, Halsey DL, Friedman NE, Lobaugh B. Correlations of serum concentrations of 1,25-dihydroxyvitamin D, phosphorus, and parathyroid hormone in tumoral calcinosis. J Clin Endocrinol Metab. 1988;67(1):88–92.

    CAS  PubMed  Google Scholar 

  75. Beck DA, Gray L, Lyles KW. Dementia associated with hyperphosphatemic tumoral calcinosis. Clin Neurol Neurosurg. 1998;100(2):121–5.

    CAS  PubMed  Google Scholar 

  76. Adams WM, Laitt RD, Davies M, O’Donovan DG. Familial tumoral calcinosis: association with cerebral and peripheral aneurysm formation. Neuroradiology. 1999;41(5):351–5.

    CAS  PubMed  Google Scholar 

  77. Ichikawa S, Imel EA, Sorenson AH, Severe R, Knudson P, Harris GJ, et al. Tumoral calcinosis presenting with eyelid calcifications due to novel missense mutations in the glycosyl transferase domain of the GALNT3 gene. J Clin Endocrinol Metab. 2006;91(11):4472–5. doi:10.1210/jc.2006-1247.

    CAS  PubMed  Google Scholar 

  78. Campagnoli MF, Pucci A, Garelli E, Carando A, Defilippi C, Lala R, et al. Familial tumoral calcinosis and testicular microlithiasis associated with a new mutation of GALNT3 in a white family. J Clin Pathol. 2006;59(4):440–2. doi:10.1136/jcp.2005.026369.

    CAS  PubMed  Google Scholar 

  79. Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet. 2005;14(3):385–90. doi:10.1093/hmg/ddi034.

    CAS  PubMed  Google Scholar 

  80. Larsson T, Davis SI, Garringer HJ, Mooney SD, Draman MS, Cullen MJ, et al. Fibroblast growth factor-23 mutants causing familial tumoral calcinosis are differentially processed. Endocrinology. 2005;146(9):3883–91. doi:10.1210/en.2005-0431.

    CAS  PubMed  Google Scholar 

  81. Araya K, Fukumoto S, Backenroth R, Takeuchi Y, Nakayama K, Ito N, et al. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab. 2005;90(10):5523–7. doi:10.1210/jc.2005-0301.

    CAS  PubMed  Google Scholar 

  82. Chefetz I, Heller R, Galli-Tsinopoulou A, Richard G, Wollnik B, Indelman M, et al. A novel homozygous missense mutation in FGF23 causes familial tumoral calcinosis associated with disseminated visceral calcification. Hum Genet. 2005;118(2):261–6. doi:10.1007/s00439-005-0026-8.

    CAS  PubMed  Google Scholar 

  83. Garringer HJ, Malekpour M, Esteghamat F, Mortazavi SM, Davis SI, Farrow EG, et al. Molecular genetic and biochemical analyses of FGF23 mutations in familial tumoral calcinosis. Am J Physiol Endocrinol Metab. 2008;295(4):E929–37. doi:10.1152/ajpendo.90456.2008.

    CAS  PubMed  Google Scholar 

  84. Topaz O, Shurman DL, Bergman R, Indelman M, Ratajczak P, Mizrachi M, et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet. 2004;36(6):579–81. doi:10.1038/ng1358.

    CAS  PubMed  Google Scholar 

  85. Kato K, Jeanneau C, Tarp MA, Benet-Pages A, Lorenz-Depiereux B, Bennett EP, et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem. 2006;281(27):18370–7. doi:10.1074/jbc.M602469200.

    CAS  PubMed  Google Scholar 

  86. Frishberg Y, Ito N, Rinat C, Yamazaki Y, Feinstein S, Urakawa I, et al. Hyperostosis–hyperphosphatemia syndrome: a congenital disorder of O-glycosylation associated with augmented processing of fibroblast growth factor 23. J Bone Miner Res. 2007;22(2):235–42. doi:10.1359/jbmr.061105.

    CAS  PubMed  Google Scholar 

  87. Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Investig. 2007;117(9):2684–91.

    CAS  PubMed  Google Scholar 

  88. Weber TJ, Liu S, Indridason OS, Quarles LD. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res. 2003;18(7):1227–34. doi:10.1359/jbmr.2003.18.7.1227.

    CAS  PubMed  Google Scholar 

  89. Shigematsu T, Kazama JJ, Yamashita T, Fukumoto S, Hosoya T, Gejyo F, et al. Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis. 2004;44(2):250–6. doi:10.1053/j.ajkd.2004.04.029.

    CAS  PubMed  Google Scholar 

  90. Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S, et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280(4):2543–9.

    CAS  PubMed  Google Scholar 

  91. Ferrari SL, Bonjour JP, Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab. 2005;90(3):1519–24. doi:10.1210/jc.2004-1039.

    CAS  PubMed  Google Scholar 

  92. Yu X, Sabbagh Y, Davis SI, Demay MB, White KE. Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone. 2005;36(6):971–7. doi:10.1016/j.bone.2005.03.002.

    CAS  PubMed  Google Scholar 

  93. Burnett SM, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, Finkelstein JS. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96. doi:10.1359/jbmr.060507.

    CAS  PubMed  Google Scholar 

  94. Ito N, Findlay DM, Anderson PH, Bonewald LF, Atkins GJ. Extracellular phosphate modulates the effect of 1alpha,25-dihydroxy vitamin D(3) (1,25D) on osteocyte like cells. J Steroid Biochem Mol Biol. 2012;. doi:10.1016/j.jsbmb.2012.09.029.

    PubMed  Google Scholar 

  95. Yamamoto R, Minamizaki T, Yoshiko Y, Yoshioka H, Tanne K, Aubin JE, et al. 1alpha,25-Dihydroxyvitamin D3 acts predominately in mature osteoblasts under conditions of high extracellular phosphate to increase fibroblast growth factor 23 production in vitro. J Endocrinol. 2010;206(3):279–86. doi:10.1677/JOE-10-0058.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, et al. 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G1036–42.

    CAS  PubMed  Google Scholar 

  97. Ito M, Sakai Y, Furumoto M, Segawa H, Haito S, Yamanaka S, et al. Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells. Am J Physiol Endocrinol Metab. 2005;288(6):E1101–9. doi:10.1152/ajpendo.00502.2004.

    CAS  PubMed  Google Scholar 

  98. Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15.

    CAS  PubMed  Google Scholar 

  99. Chefetz I, Kohno K, Izumi H, Uitto J, Richard G, Sprecher E. GALNT3, a gene associated with hyperphosphatemic familial tumoral calcinosis, is transcriptionally regulated by extracellular phosphate and modulates matrix metalloproteinase activity. Biochim Biophys Acta. 2009;1792(1):61–7. doi:10.1016/j.bbadis.2008.09.016.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Bhattacharyya N, Wiench M, Dumitrescu C, Connolly BM, Bugge TH, Patel HV, et al. Mechanism of FGF23 processing in fibrous dysplasia. J Bone Miner Res. 2012;. doi:10.1002/jbmr.1546.

    Google Scholar 

  101. Ohata Y, Arahori H, Namba N, Kitaoka T, Hirai H, Wada K, et al. Circulating levels of soluble alpha-Klotho are markedly elevated in human umbilical cord blood. J Clin Endocrinol Metab. 2011;96(6):E943–7. doi:10.1210/jc.2010-2357.

    CAS  PubMed  Google Scholar 

  102. Heipertz R, Eickhoff K, Karstens KH. Magnesium and inorganic phosphate content in CSF related to blood–brain barrier function in neurological disease. J Neurol Sci. 1979;40(2–3):87–95.

    CAS  PubMed  Google Scholar 

  103. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Investig. 2007;117(12):4003–8. doi:10.1172/JCI32409.

    CAS  PubMed  Google Scholar 

  104. Isakova T, Wahl P, Vargas GS, Gutierrez OM, Scialla J, Xie H, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370–8. doi:10.1038/ki.2011.47.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Huang QL, Feig DS, Blackstein ME. Development of tertiary hyperparathyroidism after phosphate supplementation in oncogenic osteomalacia. J Endocrinol Investig. 2000;23(4):263–7.

    CAS  Google Scholar 

  106. Galitzer H, Ben-Dov IZ, Silver J, Naveh-Many T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int. 2010;77(3):211–8. doi:10.1038/ki.2009.464.

    CAS  PubMed  Google Scholar 

  107. Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16(7):2205–15. doi:10.1681/ASN.2005010052.

    CAS  PubMed  Google Scholar 

  108. Isakova T, Gutierrez O, Shah A, Castaldo L, Holmes J, Lee H, et al. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J Am Soc Nephrol. 2008;19(3):615–23. doi:10.1681/ASN.2007060673.

    CAS  PubMed  Google Scholar 

  109. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–92. doi:10.1056/NEJMoa0706130.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V, et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Investig. 2012;122(7):2543–53. doi:10.1172/JCI61405.

    CAS  PubMed  Google Scholar 

  111. Evenepoel P, Naesens M, Claes K, Kuypers D, Vanrenterghem Y. Tertiary ‘hyperphosphatoninism’ accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am J Transplant. 2007;7(5):1193–200. doi:10.1111/j.1600-6143.2007.01753.x.

    CAS  PubMed  Google Scholar 

  112. Kawarazaki H, Shibagaki Y, Fukumoto S, Kido R, Nakajima I, Fuchinoue S, et al. The relative role of fibroblast growth factor 23 and parathyroid hormone in predicting future hypophosphatemia and hypercalcemia after living donor kidney transplantation: a 1-year prospective observational study. Nephrol Dial Transplant. 2011;26(8):2691–5. doi:10.1093/ndt/gfq777.

    CAS  PubMed  Google Scholar 

  113. Kazama JJ, Sato F, Omori K, Hama H, Yamamoto S, Maruyama H, et al. Pretreatment serum FGF-23 levels predict the efficacy of calcitriol therapy in dialysis patients. Kidney Int. 2005;67(3):1120–5. doi:10.1111/j.1523-1755.2005.00178.x.

    CAS  PubMed  Google Scholar 

  114. Gutierrez OM, Januzzi JL, Isakova T, Laliberte K, Smith K, Collerone G, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119(19):2545–52. doi:10.1161/CIRCULATIONAHA.108.844506.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Mirza MA, Larsson A, Melhus H, Lind L, Larsson TE. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis. 2009;207(2):546–51. doi:10.1016/j.atherosclerosis.2009.05.013.

    CAS  PubMed  Google Scholar 

  116. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Investig. 2011;121(11):4393–408. doi:10.1172/JCI46122.

    CAS  PubMed  Google Scholar 

  117. Mirza MA, Larsson A, Lind L, Larsson TE. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis. 2009;205(2):385–90. doi:10.1016/j.atherosclerosis.2009.01.001.

    CAS  PubMed  Google Scholar 

  118. Scialla JJ, Lau WL, Reilly MP, Isakova T, Yang HY, Crouthamel MH, et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013;. doi:10.1038/ki.2013.3.

    Google Scholar 

  119. Lindberg K, Olauson H, Amin R, Ponnusamy A, Goetz R, Taylor RF, et al. Arterial Klotho expression and FGF23 effects on vascular calcification and function. PLoS One. 2013;8(4):e60658. doi:10.1371/journal.pone.0060658.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Potts JT. Parathyroid hormone: past and present. J Endocrinol. 2005;187(3):311–25. doi:10.1677/joe.1.06057.

    CAS  PubMed  Google Scholar 

  121. Juppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science. 1991;254(5034):1024–6.

    CAS  PubMed  Google Scholar 

  122. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993;366(6455):575–80. doi:10.1038/366575a0.

    CAS  PubMed  Google Scholar 

  123. Kumar R, Thompson JR. The regulation of parathyroid hormone secretion and synthesis. J Am Soc Nephrol. 2011;22(2):216–24. doi:10.1681/ASN.2010020186.

    CAS  PubMed  Google Scholar 

Download references

Disclosures

Conflict of interest

Nobuaki Ito, David M. Findlay and Gerald J. Atkins declare that they have no conflict of interest.

Animal/Human studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald J. Atkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, N., Findlay, D.M. & Atkins, G.J. Osteocyte Communication with the Kidney Via the Production of FGF23: Remote Control of Phosphate Homeostasis. Clinic Rev Bone Miner Metab 12, 44–58 (2014). https://doi.org/10.1007/s12018-014-9155-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-014-9155-8

Keywords

Navigation