Skip to main content
Log in

Aspirin-Intolerant Asthma: A Comprehensive Review of Biomarkers and Pathophysiology

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Aspirin-exacerbated respiratory disease is a tetrad of nasal polyps, chronic hypertrophic eosinophilic sinusitis, asthma, and sensitivity to aspirin. Unawareness of this clinical condition by patients and physicians may have grave consequences because of its association with near-fatal asthma. The pathogenesis of aspirin-intolerant asthma is not related with an immunoglobin E mechanism, but with an abnormal metabolism of the lipoxygenase (LO) and cyclooxygenase (COX) pathways. At present, a diagnosis of aspirin sensitivity can be established only by provocative aspirin challenge, which represents a health risk for the patient. This circumstance has encouraged the search for aspirin intolerance-specific biomarkers. Major attempts have focused on mediators related with inflammation and eicosanoid regulation. The use of modern laboratory techniques including high-throughput methods has facilitated the detection of dozens of biological metabolites associated with aspirin-intolerant asthma disease. Not surprisingly, the majority of these is implicated in the LO and COX pathways. However, substantial amounts of data reveal the participation of many genes deriving from different ontologies. Biomarkers may represent a powerful, noninvasive tool in the diagnosis of aspirin sensitivity; moreover, they could provide a new way to classify asthma phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pfaar O, Klimek L (2006) Eicosanoids, aspirin-intolerance and the upper airways—current standards and recent improvements of the desensitization therapy. J Physiol Pharmacol 57(Suppl 12):5–13

    PubMed  Google Scholar 

  2. Samter M, Beers RF Jr (1968) Intolerance to aspirin. Clinical studies and consideration of its pathogenesis. Ann Intern Med 68:975–983

    Article  PubMed  CAS  Google Scholar 

  3. Lee RU, Stevenson DD (2011) Aspirin-exacerbated respiratory disease: evaluation and management. Allergy Asthma Immunol Res 3:3–10

    Article  PubMed  CAS  Google Scholar 

  4. Laitinen LA, Laitinen A, Haahtela T (1993) Airway mucosal inflammation even in patients with newly diagnosed asthma. Am Rev Respir Dis 147:697–704

    Article  PubMed  CAS  Google Scholar 

  5. Szczeklik A (1992) Aspirin-induced asthma: pathogenesis and clinical presentation. Allergy Proc 13:163–173

    Article  PubMed  CAS  Google Scholar 

  6. Babu KS, Salvi SS (2000) Aspirin and asthma. Chest 118:1470–1476

    Article  PubMed  CAS  Google Scholar 

  7. Szczeklik A, Stevenson DD (2003) Aspirin-induced asthma: advances in pathogenesis, diagnosis, and management. J Allergy Clin Immunol 111:913–921

    Article  PubMed  CAS  Google Scholar 

  8. Kim SH, Hur GY, Choi JH, Park HS (2008) Pharmacogenetics of aspirin-intolerant asthma. Pharmacogenomics 9:85–91

    Article  PubMed  CAS  Google Scholar 

  9. Palikhe NS, Kim SH, Park HS (2008) What do we know about the genetics of aspirin intolerance? J Clin Pharm Ther 33:465–472

    Article  PubMed  CAS  Google Scholar 

  10. Balsinde J, Winstead MV, Dennis EA (2002) Phospholipase A(2) regulation of arachidonic acid mobilization. FEBS Lett 531:2–6

    Article  PubMed  CAS  Google Scholar 

  11. Schievella AR, Regier MK, Smith WL, Lin LL (1995) Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem 270:30749–30754

    Article  PubMed  CAS  Google Scholar 

  12. van der Donk WA, Tsai AL, Kulmacz RJ (2002) The cyclooxygenase reaction mechanism. Biochemistry 41:15451–15458

    Article  PubMed  Google Scholar 

  13. Smith HS (2006) Arachidonic acid pathways in nociception. J Support Oncol 4:277–287

    PubMed  CAS  Google Scholar 

  14. Coleman RA, Smith WL, Narumiya S (1994) International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46:205–229

    PubMed  CAS  Google Scholar 

  15. Kennedy I, Coleman RA, Humphrey PP, Levy GP, Lumley P (1982) Studies on the characterisation of prostanoid receptors: a proposed classification. Prostaglandins 24:667–689

    PubMed  CAS  Google Scholar 

  16. Narumiya S, FitzGerald GA (2001) Genetic and pharmacological analysis of prostanoid receptor function. J Clin Invest 108:25–30

    PubMed  CAS  Google Scholar 

  17. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, Ichimasa M, Sugamura K, Nakamura M, Takano S, Nagata K (2001) Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193:255–261

    Article  PubMed  CAS  Google Scholar 

  18. Monneret G, Gravel S, Diamond M, Rokach J, Powell WS (2001) Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. Blood 98:1942–1948

    Article  PubMed  CAS  Google Scholar 

  19. Vancheri C, Mastruzzo C, Sortino MA, Crimi N (2004) The lung as a privileged site for the beneficial actions of PGE2. Trends Immunol 25:40–46

    Article  PubMed  CAS  Google Scholar 

  20. Kolodsick JE, Peters-Golden M, Larios J, Toews GB, Thannickal VJ, Moore BB (2003) Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am J Respir Cell Mol Biol 29:537–544

    Article  PubMed  CAS  Google Scholar 

  21. Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR (2000) Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 164:1663–1667

    PubMed  CAS  Google Scholar 

  22. Kowalski ML, Pawliczak R, Wozniak J, Siuda K, Poniatowska M, Iwaszkiewicz J, Kornatowski T, Kaliner MA (2000) Differential metabolism of arachidonic acid in nasal polyp epithelial cells cultured from aspirin-sensitive and aspirin-tolerant patients. Am J Respir Crit Care Med 161:391–398

    Article  PubMed  CAS  Google Scholar 

  23. Swierczynska M, Nizankowska-Mogilnicka E, Zarychta J, Gielicz A, Szczeklik A (2003) Nasal versus bronchial and nasal response to oral aspirin challenge: clinical and biochemical differences between patients with aspirin-induced asthma/rhinitis. J Allergy Clin Immunol 112:995–1001

    Article  PubMed  CAS  Google Scholar 

  24. Mastalerz L, Sanak M, Gawlewicz-Mroczka A, Gielicz A, Cmiel A, Szczeklik A (2008) Prostaglandin E2 systemic production in patients with asthma with and without aspirin hypersensitivity. Thorax 63:27–34

    Article  PubMed  CAS  Google Scholar 

  25. Ferreri NR, Howland WC, Stevenson DD, Spiegelberg HL (1988) Release of leukotrienes, prostaglandins, and histamine into nasal secretions of aspirin-sensitive asthmatics during reaction to aspirin. Am Rev Respir Dis 137:847–854

    Article  PubMed  CAS  Google Scholar 

  26. Picado C, Ramis I, Rosello J, Prat J, Bulbena O, Plaza V, Montserrat JM, Gelpi E (1992) Release of peptide leukotriene into nasal secretions after local instillation of aspirin in aspirin-sensitive asthmatic patients. Am Rev Respir Dis 145:65–69

    Article  PubMed  CAS  Google Scholar 

  27. Sanak M, Kielbasa B, Bochenek G, Szczeklik A (2004) Exhaled eicosanoids following oral aspirin challenge in asthmatic patients. Clin Exp Allergy 34:1899–1904

    Article  PubMed  CAS  Google Scholar 

  28. Sladek K, Dworski R, Soja J, Sheller JR, Nizankowska E, Oates JA, Szczeklik A (1994) Eicosanoids in bronchoalveolar lavage fluid of aspirin-intolerant patients with asthma after aspirin challenge. Am J Respir Crit Care Med 149:940–946

    Article  PubMed  CAS  Google Scholar 

  29. Sanak M, Gielicz A, Bochenek G, Kaszuba M, Nizankowska-Mogilnicka E, Szczeklik A (2011) Targeted eicosanoid lipidomics of exhaled breath condensate provide a distinct pattern in the aspirin-intolerant asthma phenotype. J Allergy Clin Immunol 127:1141–1147

    Article  PubMed  CAS  Google Scholar 

  30. Peters-Golden M, Henderson WR Jr (2007) Leukotrienes. N Engl J Med 357:1841–1854

    Article  PubMed  CAS  Google Scholar 

  31. Ying S, Meng Q, Scadding G, Parikh A, Corrigan CJ, Lee TH (2006) Aspirin-sensitive rhinosinusitis is associated with reduced E-prostanoid 2 receptor expression on nasal mucosal inflammatory cells. J Allergy Clin Immunol 117:312–318

    Article  PubMed  CAS  Google Scholar 

  32. Sousa A, Pfister R, Christie PE, Lane SJ, Nasser SM, Schmitz-Schumann M, Lee TH (1997) Enhanced expression of cyclo-oxygenase isoenzyme 2 (COX-2) in asthmatic airways and its cellular distribution in aspirin-sensitive asthma. Thorax 52:940–945

    Article  PubMed  CAS  Google Scholar 

  33. Cowburn AS, Sladek K, Soja J, Adamek L, Nizankowska E, Szczeklik A, Lam BK, Penrose JF, Austen FK, Holgate ST, Sampson AP (1998) Overexpression of leukotriene C4 synthase in bronchial biopsies from patients with aspirin-intolerant asthma. J Clin Invest 101:834–846

    Article  PubMed  CAS  Google Scholar 

  34. Adamjee J, Suh YJ, Park HS, Choi JH, Penrose JF, Lam BK, Austen KF, Cazaly AM, Wilson SJ, Sampson AP (2006) Expression of 5-lipoxygenase and cyclooxygenase pathway enzymes in nasal polyps of patients with aspirin-intolerant asthma. J Pathol 209:392–399

    Article  PubMed  CAS  Google Scholar 

  35. Picado C, Fernandez-Morata JC, Juan M, Roca-Ferrer J, Fuentes M, Xaubet A, Mullol J (1999) Cyclooxygenase-2 mRNA is downexpressed in nasal polyps from aspirin-sensitive asthmatics. Am J Respir Crit Care Med 160:291–296

    Article  PubMed  CAS  Google Scholar 

  36. Gronert K, Clish CB, Romano M, Serhan CN (1999) Transcellular regulation of eicosanoid biosynthesis. Methods Mol Biol 120:119–144

    PubMed  CAS  Google Scholar 

  37. Dahlen SE, Hedqvist P, Hammarstrom S, Samuelsson B (1980) Leukotrienes are potent constrictors of human bronchi. Nature 288:484–486

    Article  PubMed  CAS  Google Scholar 

  38. Christie PE, Tagari P, Ford-Hutchinson AW, Charlesson S, Chee P, Arm JP, Lee TH (1991) Urinary leukotriene E4 concentrations increase after aspirin challenge in aspirin-sensitive asthmatic subjects. Am Rev Respir Dis 143:1025–1029

    Article  PubMed  CAS  Google Scholar 

  39. Szczeklik A, Sladek K, Dworski R, Nizankowska E, Soja J, Sheller J, Oates J (1996) Bronchial aspirin challenge causes specific eicosanoid response in aspirin-sensitive asthmatics. Am J Respir Crit Care Med 154:1608–1614

    Article  PubMed  CAS  Google Scholar 

  40. Corrigan C, Mallett K, Ying S, Roberts D, Parikh A, Scadding G, Lee T (2005) Expression of the cysteinyl leukotriene receptors cysLT(1) and cysLT(2) in aspirin-sensitive and aspirin-tolerant chronic rhinosinusitis. J Allergy Clin Immunol 115:316–322

    Article  PubMed  CAS  Google Scholar 

  41. Sousa AR, Parikh A, Scadding G, Corrigan CJ, Lee TH (2002) Leukotriene-receptor expression on nasal mucosal inflammatory cells in aspirin-sensitive rhinosinusitis. N Engl J Med 347:1493–1499

    Article  PubMed  CAS  Google Scholar 

  42. Cai Y, Bjermer L, Halstensen TS (2003) Bronchial mast cells are the dominating LTC4S-expressing cells in aspirin-tolerant asthma. Am J Respir Cell Mol Biol 29:683–693

    Article  PubMed  CAS  Google Scholar 

  43. Perez-Novo CA, Watelet JB, Claeys C, Van Cauwenberge P, Bachert C (2005) Prostaglandin, leukotriene, and lipoxin balance in chronic rhinosinusitis with and without nasal polyposis. J Allergy Clin Immunol 115:1189–1196

    Article  PubMed  CAS  Google Scholar 

  44. Sanak M, Pierzchalska M, Bazan-Socha S, Szczeklik A (2000) Enhanced expression of the leukotriene C(4) synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am J Respir Cell Mol Biol 23:290–296

    Article  PubMed  CAS  Google Scholar 

  45. Gaber F, Daham K, Higashi A, Higashi N, Gulich A, Delin I, James A, Skedinger M, Gyllfors P, Nord M, Dahlen SE, Kumlin M, Dahlen B (2008) Increased levels of cysteinyl-leukotrienes in saliva, induced sputum, urine and blood from patients with aspirin-intolerant asthma. Thorax 63:1076–1082

    Article  PubMed  CAS  Google Scholar 

  46. Ono E, Taniguchi M, Higashi N, Mita H, Yamaguchi H, Tatsuno S, Fukutomi Y, Tanimoto H, Sekiya K, Oshikata C, Tsuburai T, Tsurikisawa N, Otomo M, Maeda Y, Hasegawa M, Miyazaki E, Kumamoto T, Akiyama K (2011) Increase in salivary cysteinyl-leukotriene concentration in patients with aspirin-intolerant asthma. Allergol Int 60:37–43

    Article  PubMed  CAS  Google Scholar 

  47. Christie PE, Tagari P, Ford-Hutchinson AW, Black C, Markendorf A, Schmitz-Schumann M, Lee TH (1992) Urinary leukotriene E4 after lysine-aspirin inhalation in asthmatic subjects. Am Rev Respir Dis 146:1531–1534

    Article  PubMed  CAS  Google Scholar 

  48. Mastalerz L, Sanak M, Szczeklik A (2001) Serum interleukin-5 in aspirin-induced asthma. Clin Exp Allergy 31:1036–1040

    Article  PubMed  CAS  Google Scholar 

  49. Hills JM, Sellers AJ, Mistry J, Broekman M, Howson W (1991) Phosphinic acid analogues of GABA are antagonists at the GABAB receptor in the rat anococcygeus. Br J Pharmacol 102:5–6

    Article  PubMed  CAS  Google Scholar 

  50. Farooque SP, Lee TH (2009) Aspirin-sensitive respiratory disease. Annu Rev Physiol 71:465–487

    Article  PubMed  CAS  Google Scholar 

  51. Romano M (2010) Lipoxin and aspirin-triggered lipoxins. Sci World J 10:1048–1064

    Article  CAS  Google Scholar 

  52. Ryan A, Godson C (2010) Lipoxins: regulators of resolution. Curr Opin Pharmacol 10:166–172

    Article  PubMed  CAS  Google Scholar 

  53. Serhan CN (2007) Resolution phase of inflammation: novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annu Rev Immunol 25:101–137

    Article  PubMed  CAS  Google Scholar 

  54. Stables MJ, Gilroy DW (2011) Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res 50:35–51

    Article  PubMed  CAS  Google Scholar 

  55. Sanak M, Levy BD, Clish CB, Chiang N, Gronert K, Mastalerz L, Serhan CN, Szczeklik A (2000) Aspirin-tolerant asthmatics generate more lipoxins than aspirin-intolerant asthmatics. Eur Respir J 16:44–49

    Article  PubMed  CAS  Google Scholar 

  56. Celik GE, Erkekol FO, Misirligil Z, Melli M (2007) Lipoxin A4 levels in asthma: relation with disease severity and aspirin sensitivity. Clin Exp Allergy 37:1494–1501

    PubMed  CAS  Google Scholar 

  57. Serhan CN (2008) Systems approach with inflammatory exudates uncovers novel anti-inflammatory and pro-resolving mediators. Prostaglandins Leukot Essent Fatty Acids 79:157–163

    Article  PubMed  CAS  Google Scholar 

  58. Aoki H, Hisada T, Ishizuka T, Utsugi M, Kawata T, Shimizu Y, Okajima F, Dobashi K, Mori M (2008) Resolvin E1 dampens airway inflammation and hyperresponsiveness in a murine model of asthma. Biochem Biophys Res Commun 367:509–515

    Article  PubMed  CAS  Google Scholar 

  59. Aoki H, Hisada T, Ishizuka T, Utsugi M, Ono A, Koga Y, Sunaga N, Nakakura T, Okajima F, Dobashi K, Mori M (2010) Protective effect of resolvin E1 on the development of asthmatic airway inflammation. Biochem Biophys Res Commun 400:128–133

    Article  PubMed  CAS  Google Scholar 

  60. Bilal S, Haworth O, Wu L, Weylandt KH, Levy BD, Kang JX (2011) Fat-1 transgenic mice with elevated omega-3 fatty acids are protected from allergic airway responses. Biochim Biophys Acta 1812:1164–1169

    Article  PubMed  CAS  Google Scholar 

  61. Haworth O, Cernadas M, Yang R, Serhan CN, Levy BD (2008) Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol 9:873–879

    Article  PubMed  CAS  Google Scholar 

  62. Lloyd CM, Hessel EM (2010) Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol 10:838–848

    Article  PubMed  CAS  Google Scholar 

  63. Velazquez JR, Teran LM (2011) Chemokines and their receptors in the allergic airway inflammatory process. Clin Rev Allergy Immunol 41:76–88

    Article  PubMed  CAS  Google Scholar 

  64. Dahlen B, Kumlin M, Margolskee DJ, Larsson C, Blomqvist H, Williams VC, Zetterstrom O, Dahlen SE (1993) The leukotriene-receptor antagonist MK-0679 blocks airway obstruction induced by inhaled lysine-aspirin in aspirin-sensitive asthmatics. Eur Respir J 6:1018–1026

    PubMed  CAS  Google Scholar 

  65. Nasser S, Christie PE, Pfister R, Sousa AR, Walls A, Schmitz-Schumann M, Lee TH (1996) Effect of endobronchial aspirin challenge on inflammatory cells in bronchial biopsy samples from aspirin-sensitive asthmatic subjects. Thorax 51:64–70

    Article  PubMed  CAS  Google Scholar 

  66. Zhang MQ, Timmerman H (1997) Mast cell tryptase and asthma. Mediators Inflamm 6:311–317

    Article  PubMed  CAS  Google Scholar 

  67. Katial RK, Strand M, Prasertsuntarasai T, Leung R, Zheng W, Alam R (2010) The effect of aspirin desensitization on novel biomarkers in aspirin-exacerbated respiratory diseases. J Allergy Clin Immunol 126:738–744

    Article  PubMed  CAS  Google Scholar 

  68. Fischer AR, Rosenberg MA, Lilly CM, Callery JC, Rubin P, Cohn J, White MV, Igarashi Y, Kaliner MA, Drazen JM (1994) Direct evidence for a role of the mast cell in the nasal response to aspirin in aspirin-sensitive asthma. J Allergy Clin Immunol 94:1046–1056

    Article  PubMed  CAS  Google Scholar 

  69. Bosso JV, Schwartz LB, Stevenson DD (1991) Tryptase and histamine release during aspirin-induced respiratory reactions. J Allergy Clin Immunol 88:830–837

    Article  PubMed  CAS  Google Scholar 

  70. Bochenek G, Nagraba K, Nizankowska E, Szczeklik A (2003) A controlled study of 9alpha,11beta-PGF2 (a prostaglandin D2 metabolite) in plasma and urine of patients with bronchial asthma and healthy controls after aspirin challenge. J Allergy Clin Immunol 111:743–749

    Article  PubMed  CAS  Google Scholar 

  71. Celik GE, Schroeder JT, Hamilton RG, Saini SS, Adkinson NF (2009) Effect of in vitro aspirin stimulation on basophils in patients with aspirin-exacerbated respiratory disease. Clin Exp Allergy 39:1522–1531

    Article  PubMed  CAS  Google Scholar 

  72. Nasser SM, Pfister R, Christie PE, Sousa AR, Barker J, Schmitz-Schumann M, Lee TH (1996) Inflammatory cell populations in bronchial biopsies from aspirin-sensitive asthmatic subjects. Am J Respir Crit Care Med 153:90–96

    Article  PubMed  CAS  Google Scholar 

  73. Sousa AR, Lams BE, Pfister R, Christie PE, Schmitz M, Lee TH (1997) Expression of interleukin-5 and granulocyte-macrophage colony-stimulating factor in aspirin-sensitive and non-aspirin-sensitive asthmatic airways. Am J Respir Crit Care Med 156:1384–1389

    Article  PubMed  CAS  Google Scholar 

  74. Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160:1001–1008

    Article  PubMed  CAS  Google Scholar 

  75. Wenzel SE (2009) Eosinophils in asthma—closing the loop or opening the door? N Engl J Med 360:1026–1028

    Article  PubMed  CAS  Google Scholar 

  76. Varga EM, Jacobson MR, Masuyama K, Rak S, Till SJ, Darby Y, Hamid Q, Lund V, Scadding GK, Durham SR (1999) Inflammatory cell populations and cytokine mRNA expression in the nasal mucosa in aspirin-sensitive rhinitis. Eur Respir J 14:610–615

    Article  PubMed  CAS  Google Scholar 

  77. Kupczyk M, Kurmanowska Z, Kuprys-Lipinska I, Bochenska-Marciniak M, Kuna P (2010) Mediators of inflammation in nasal lavage from aspirin intolerant patients after aspirin challenge. Respir Med 104:1404–1409

    Article  PubMed  Google Scholar 

  78. Bachert C, Claeys SE, Tomassen P, van Zele T, Zhang N (2010) Rhinosinusitis and asthma: a link for asthma severity. Curr Allergy Asthma Rep 10:194–201

    Article  PubMed  CAS  Google Scholar 

  79. Perez Novo CA, Jedrzejczak-Czechowicz M, Lewandowska-Polak A, Claeys C, Holtappels G, Van Cauwenberge P, Kowalski ML, Bachert C (2010) T cell inflammatory response, Foxp3 and TNFRS18-L regulation of peripheral blood mononuclear cells from patients with nasal polyps-asthma after staphylococcal superantigen stimulation. Clin Exp Allergy 40:1323–1332

    Article  PubMed  CAS  Google Scholar 

  80. Hayden MS, Ghosh S (2011) NF-kappaB in immunobiology. Cell Res 21:223–244

    Article  PubMed  CAS  Google Scholar 

  81. Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265:956–959

    Article  PubMed  CAS  Google Scholar 

  82. Picado C, Bioque G, Roca-Ferrer J, Pujols L, Mullol J, Benitez P, Bulbena O (2003) Nuclear factor-kappaB activity is down-regulated in nasal polyps from aspirin-sensitive asthmatics. Allergy 58:122–126

    Article  PubMed  CAS  Google Scholar 

  83. Mortaz E, Redegeld FA, Nijkamp FP, Engels F (2005) Dual effects of acetylsalicylic acid on mast cell degranulation, expression of cyclooxygenase-2 and release of pro-inflammatory cytokines. Biochem Pharmacol 69:1049–1057

    Article  PubMed  CAS  Google Scholar 

  84. Aeberhard EE, Henderson SA, Arabolos NS, Griscavage JM, Castro FE, Barrett CT, Ignarro LJ (1995) Nonsteroidal anti-inflammatory drugs inhibit expression of the inducible nitric oxide synthase gene. Biochem Biophys Res Commun 208:1053–1059

    Article  PubMed  CAS  Google Scholar 

  85. Cianferoni A, Schroeder JT, Kim J, Schmidt JW, Lichtenstein LM, Georas SN, Casolaro V (2001) Selective inhibition of interleukin-4 gene expression in human T cells by aspirin. Blood 97:1742–1749

    Article  PubMed  CAS  Google Scholar 

  86. Perez G, Melo M, Keegan AD, Zamorano J (2002) Aspirin and salicylates inhibit the IL-4- and IL-13-induced activation of STAT6. J Immunol 168:1428–1434

    Google Scholar 

  87. Steinke JW, Culp JA, Kropf E, Borish L (2009) Modulation by aspirin of nuclear phospho-signal transducer and activator of transcription 6 expression: possible role in therapeutic benefit associated with aspirin desensitization. J Allergy Clin Immunol 124:724–730

    Article  PubMed  CAS  Google Scholar 

  88. Choi S, Park HS, Cheon MS, Lee K (2005) Expression profile analysis of human peripheral blood mononuclear cells in response to aspirin. Arch Immunol Ther Exp (Warsz) 53:151–158

    CAS  Google Scholar 

  89. Devouassoux G, Pachot A, Laforest L, Diasparra J, Freymond N, Van Ganse E, Mougin B, Pacheco Y (2008) Galectin-10 mRNA is overexpressed in peripheral blood of aspirin-induced asthma. Allergy 63:125–131

    PubMed  CAS  Google Scholar 

  90. Shin S, Park JS, Kim YJ, Oh T, An S, Park CS (2012) Differential gene expression profile in PBMCs from subjects with AERD and ATA: a gene marker for AERD. Mol Genet Genomics 287:361–371

    Article  PubMed  CAS  Google Scholar 

  91. Sekigawa T, Tajima A, Hasegawa T, Hasegawa Y, Inoue H, Sano Y, Matsune S, Kurono Y, Inoue I (2009) Gene-expression profiles in human nasal polyp tissues and identification of genetic susceptibility in aspirin-intolerant asthma. Clin Exp Allergy 39:972–981

    Article  PubMed  CAS  Google Scholar 

  92. Schroecksnadel K, Frick B, Winkler C, Wirleitner B, Schennach H, Fuchs D (2005) Aspirin downregulates homocysteine formation in stimulated human peripheral blood mononuclear cells. Scand J Immunol 62:155–160

    Article  PubMed  CAS  Google Scholar 

  93. Colotta F, Re F, Muzio M, Bertini R, Polentarutti N, Sironi M, Giri JG, Dower SK, Sims JE, Mantovani A (1993) Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 261:472–475

    Article  PubMed  CAS  Google Scholar 

  94. Porreca E, Reale M, Di FC, Di GM, Barbacane RC, Castellani ML, Baccante G, Conti P, Cuccurullo F (1996) Down-regulation of cyclooxygenase-2 (COX-2) by interleukin-1 receptor antagonist in human monocytes. Immunology 89:424–429

    Article  PubMed  CAS  Google Scholar 

  95. Stankovic KM, Goldsztein H, Reh DD, Platt MP, Metson R (2008) Gene expression profiling of nasal polyps associated with chronic sinusitis and aspirin-sensitive asthma. Laryngoscope 118:881–889

    Article  PubMed  CAS  Google Scholar 

  96. Zander KA, Saavedra MT, West J, Scapa V, Sanders L, Kingdom TT (2009) Protein microarray analysis of nasal polyps from aspirin-sensitive and aspirin-tolerant patients with chronic rhinosinusitis. Am J Rhinol Allergy 23:268–272

    Article  PubMed  Google Scholar 

  97. Cheong HS, Park SM, Kim MO, Park JS, Lee JY, Byun JY, Park BL, Shin HD, Park CS (2011) Genome-wide methylation profile of nasal polyps: relation to aspirin hypersensitivity in asthmatics. Allergy 66:637–644

    Article  PubMed  CAS  Google Scholar 

  98. Wenzel SE (2006) Asthma: defining of the persistent adult phenotypes. Lancet 368:804–813

    Article  PubMed  CAS  Google Scholar 

  99. Moon HG, Tae YM, Kim YS, Gyu JS, Oh SY, Song GY, Zhu Z, Kim YK (2010) Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung. Allergy 65:1093–1103

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Mexican National Council of Science and Technology (CONACyT-México) grant no. 160489. The style review of the manuscript by Maggie Brunner, M.A., is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan R. Velazquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velazquez, J.R., Teran, L.M. Aspirin-Intolerant Asthma: A Comprehensive Review of Biomarkers and Pathophysiology. Clinic Rev Allerg Immunol 45, 75–86 (2013). https://doi.org/10.1007/s12016-012-8340-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-012-8340-0

Keywords

Navigation