Skip to main content

Advertisement

Log in

Immunosuppressive Properties of Mesenchymal Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSC) can be isolated from different adult tissues including bone marrow, adipose tissue, cord blood and placenta. MSCs modulate the immune function of the major immune cell populations involved in alloantigen recognition and elimination, including antigen presenting cells, T cells, B cells and natural killer cells. Many clinical trials are currently underway that employ MSCs to treat human immunological diseases. However, the molecular mechanism that mediates the immunosuppressive effect of MSCs is still unclear and the safety of using MSC in patient needs further confirmation. Here, we review the cytokines that activate MSCs and the soluble factors produced by MSCs, which allow them to exert their immunosuppressive effects. We review the mechanism responsible, at least in part, for the immune suppressive effects of MSCs and highlight areas of research required for a better understanding of MSC immune modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822.

    PubMed  CAS  Google Scholar 

  2. Albina, J. E., Abate, J. A., & Henry, W. L., Jr. (1991). Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. Journal of Immunology, 147, 144–148.

    CAS  Google Scholar 

  3. Aldinucci, A., Rizzetto, L., Pieri, L., Nosi, D., Romagnoli, P., Biagioli, T., et al. (2010). Inhibition of immune synapse by altered dendritic cell actin distribution: a new pathway of mesenchymal stem cell immune regulation. Journal of Immunology, 185, 5102–5110.

    CAS  Google Scholar 

  4. Angoulvant, D., Clerc, A., Benchalal, S., Galambrun, C., Farre, A., Bertrand, Y., et al. (2004). Human mesenchymal stem cells suppress induction of cytotoxic response to alloantigens. Biorheology, 41, 469–476.

    PubMed  CAS  Google Scholar 

  5. Asari, S., Itakura, S., Ferreri, K., Liu, C. P., Kuroda, Y., Kandeel, F., et al. (2009). Mesenchymal stem cells suppress B-cell terminal differentiation. Experimental Hematology, 37, 604–615.

    PubMed  CAS  Google Scholar 

  6. Augello, A., Kurth, T. B., & De Bari, C. (2010). Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. European Cells & Materials, 20, 121–133.

    CAS  Google Scholar 

  7. Augello, A., Tasso, R., Negrini, S. M., Amateis, A., Indiveri, F., Cancedda, R., et al. (2005). Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. European Journal of Immunology, 35, 1482–1490.

    PubMed  CAS  Google Scholar 

  8. Aversa F, Terenzi A, Felicini R, Tabilio A, Falzetti F, Carotti A, Falcinelli F, Sodani P, Amici A, Zucchetti P, Mazzarino I, Martelli MF (1998) Mismatched T cell-depleted hematopoietic stem cell transplantation for children with high-risk acute leukemia. Bone marrow transplantation 22 Suppl 5: S29–32

  9. Awaya, N., Rupert, K., Bryant, E., & Torok-Storb, B. (2002). Failure of adult marrow-derived stem cells to generate marrow stroma after successful hematopoietic stem cell transplantation. Experimental Hematology, 30, 937–942.

    PubMed  Google Scholar 

  10. Bai, L., Lennon, D. P., Eaton, V., Maier, K., Caplan, A. I., Miller, S. D., et al. (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia, 57, 1192–1203.

    PubMed  Google Scholar 

  11. Bailo, M., Soncini, M., Vertua, E., Signoroni, P. B., Sanzone, S., Lombardi, G., et al. (2004). Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation, 78, 1439–1448.

    PubMed  Google Scholar 

  12. Ball, L. M., Bernardo, M. E., Roelofs, H., Lankester, A., Cometa, A., Egeler, R. M., et al. (2007). Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation. Blood, 110, 2764–2767.

    PubMed  CAS  Google Scholar 

  13. Barrett, A. J., & Le Blanc, K. (2008). Prophylaxis of acute GVHD: manipulate the graft or the environment? Best Practice & Research. Clinical Haematology, 21, 165–176.

    CAS  Google Scholar 

  14. Baron F, Lechanteur C, Willems E, Bruck F, Baudoux E, Seidel L, Vanbellinghen JF, Hafraoui K, Lejeune M, Gothot A, Fillet G, Beguin Y (2010) Cotransplantation of mesenchymal stem cells might prevent death from graft-versus-host disease (GVHD) without abrogating graft-versus-tumor effects after HLA-mismatched allogeneic transplantation following nonmyeloablative conditioning. Biology of blood and marrow transplantation 16, 838–847

  15. Bartholomew, A., Sturgeon, C., Siatskas, M., Ferrer, K., McIntosh, K., Patil, S., et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 30, 42–48.

    PubMed  Google Scholar 

  16. Bensidhoum, M., Chapel, A., Francois, S., Demarquay, C., Mazurier, C., Fouillard, L., et al. (2004). Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood, 103, 3313–3319.

    PubMed  CAS  Google Scholar 

  17. Beyth, S., Borovsky, Z., Mevorach, D., Liebergall, M., Gazit, Z., Aslan, H., et al. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105, 2214–2219.

    PubMed  CAS  Google Scholar 

  18. Bian, L., Guo, Z. K., Wang, H. X., Wang, J. S., Wang, H., Li, Q. F., et al. (2009). In vitro and in vivo immunosuppressive characteristics of hepatocyte growth factor-modified murine mesenchymal stem cells. In Vivo, 23, 21–27.

    PubMed  CAS  Google Scholar 

  19. Blasig, C., Zietz, C., Haar, B., Neipel, F., Esser, S., Brockmeyer, N. H., et al. (1997). Monocytes in Kaposi’s sarcoma lesions are productively infected by human herpesvirus 8. Journal of Virology, 71, 7963–7968.

    PubMed  CAS  Google Scholar 

  20. Bocelli-Tyndall, C., Bracci, L., Schaeren, S., Feder-Mengus, C., Barbero, A., Tyndall, A., et al. (2009). Human bone marrow mesenchymal stem cells and chondrocytes promote and/or suppress the in vitro proliferation of lymphocytes stimulated by interleukins 2, 7 and 15. Annals of the Rheumatic Diseases, 68, 1352–1359.

    PubMed  CAS  Google Scholar 

  21. Boshoff, C., & Chang, Y. (2001). Kaposi’s sarcoma-associated herpesvirus: a new DNA tumor virus. Annual Review of Medicine, 52, 453–470.

    PubMed  CAS  Google Scholar 

  22. Boshoff, C., Schulz, T. F., Kennedy, M. M., Graham, A. K., Fisher, C., Thomas, A., et al. (1995). Kaposi’s sarcoma-associated herpesvirus infects endothelial and spindle cells. Nature Medicine, 1, 1274–1278.

    PubMed  CAS  Google Scholar 

  23. Boyon C, Collinet P, Boulanger L, Rubod C, Lucot JP, Vinatier D (2011) Fetal microchimerism: benevolence or malevolence for the mother? European journal of obstetrics, gynecology, and reproductive biology. doi:10.1016/j.ejogrb.2011.05.008.

  24. Brooke, G., Tong, H., Levesque, J. P., & Atkinson, K. (2008). Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells and Development, 17, 929–940.

    PubMed  CAS  Google Scholar 

  25. Brown, K. E., Anderson, S. M., & Young, N. S. (1993). Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science, 262, 114–117.

    PubMed  CAS  Google Scholar 

  26. Browning, P. J., Sechler, J. M., Kaplan, M., Washington, R. H., Gendelman, R., Yarchoan, R., et al. (1994). Identification and culture of Kaposi’s sarcoma-like spindle cells from the peripheral blood of human immunodeficiency virus-1-infected individuals and normal controls. Blood, 84, 2711–2720.

    PubMed  CAS  Google Scholar 

  27. Cargnoni, A., Gibelli, L., Tosini, A., Signoroni, P. B., Nassuato, C., Arienti, D., et al. (2009). Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplantation, 18, 405–422.

    PubMed  Google Scholar 

  28. Carrion, F., Nova, E., Ruiz, C., Diaz, F., Inostroza, C., Rojo, D., et al. (2010). Autologous mesenchymal stem cell treatment increased T regulatory cells with no effect on disease activity in two systemic lupus erythematosus patients. Lupus, 19, 317–322.

    PubMed  CAS  Google Scholar 

  29. Cassinotti, P., Burtonboy, G., Fopp, M., & Siegl, G. (1997). Evidence for persistence of human parvovirus B19 DNA in bone marrow. Journal of Medical Virology, 53, 229–232.

    PubMed  CAS  Google Scholar 

  30. Chan, J. L., Tang, K. C., Patel, A. P., Bonilla, L. M., Pierobon, N., Ponzio, N. M., et al. (2006). Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood, 107, 4817–4824.

    PubMed  CAS  Google Scholar 

  31. Chan, W. K., Lau, A. S., Li, J. C., Law, H. K., Lau, Y. L., & Chan, G. C. (2008). MHC expression kinetics and immunogenicity of mesenchymal stromal cells after short-term IFN-gamma challenge. Experimental Hematology, 36, 1545–1555.

    PubMed  CAS  Google Scholar 

  32. Chang, C. J., Yen, M. L., Chen, Y. C., Chien, C. C., Huang, H. I., Bai, C. H., et al. (2006). Placenta-derived multipotent cells exhibit immunosuppressive properties that are enhanced in the presence of interferon-gamma. Stem Cells, 24, 2466–2477.

    PubMed  CAS  Google Scholar 

  33. Chang, Y. J., Hwang, S. M., Tseng, C. P., Cheng, F. C., Huang, S. H., Hsu, L. F., et al. (2010). Isolation of mesenchymal stem cells with neurogenic potential from the mesoderm of the amniotic membrane. Cells, Tissues, Organs, 192, 93–105.

    PubMed  Google Scholar 

  34. Chen, C. P., Liu, S. H., Huang, J. P., Aplin, J. D., Wu, Y. H., Chen, P. C., et al. (2009). Engraftment potential of human placenta-derived mesenchymal stem cells after in utero transplantation in rats. Human Reproduction, 24, 154–165.

    PubMed  CAS  Google Scholar 

  35. Chen, J., Li, Y., Katakowski, M., Chen, X., Wang, L., Lu, D., et al. (2003). Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. Journal of Neuroscience Research, 73, 778–786.

    PubMed  CAS  Google Scholar 

  36. Chen, L., He, D. M., & Zhang, Y. (2009). The differentiation of human placenta-derived mesenchymal stem cells into dopaminergic cells in vitro. Cellular and Molecular Biology Letters, 14, 528–536.

    PubMed  CAS  Google Scholar 

  37. Christensen, M. E., Turner, B. E., Sinfield, L. J., Kollar, K., Cullup, H., Waterhouse, N. J., et al. (2010). Mesenchymal stromal cells transiently alter the inflammatory milieu post-transplant to delay graft-versus-host disease. Haematologica, 95, 2102–2110.

    PubMed  Google Scholar 

  38. Cilloni, D., Carlo-Stella, C., Falzetti, F., Sammarelli, G., Regazzi, E., Colla, S., et al. (2000). Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood, 96, 3637–3643.

    PubMed  CAS  Google Scholar 

  39. Cirello, V., Recalcati, M. P., Muzza, M., Rossi, S., Perrino, M., Vicentini, L., et al. (2008). Fetal cell microchimerism in papillary thyroid cancer: a possible role in tumor damage and tissue repair. Cancer Research, 68, 8482–8488.

    PubMed  CAS  Google Scholar 

  40. Claas, F. H., van Rood, J. J., Warren, R. P., Weiden, P. L., Su, P. J., & Storb, R. (1979). The detection of non-HLA antibodies and their possible role in bone marrow graft rejection. Transplantation Proceedings, 11, 423–426.

    PubMed  CAS  Google Scholar 

  41. Comoli P, Ginevri F, Maccario R, Avanzini MA, Marconi M, Groff A, Cometa A, Cioni M, Porretti L, Barberi W, Frassoni F, Locatelli F (2008) Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrology, dialysis, transplantation 23, 1196–1202.

    CAS  Google Scholar 

  42. Constantin, G., Marconi, S., Rossi, B., Angiari, S., Calderan, L., Anghileri, E., et al. (2009). Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells, 27, 2624–2635.

    PubMed  CAS  Google Scholar 

  43. Corcione, A., Benvenuto, F., Ferretti, E., Giunti, D., Cappiello, V., Cazzanti, F., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.

    PubMed  CAS  Google Scholar 

  44. Corselli, M., Chen, C. W., Crisan, M., Lazzari, L., & Peault, B. (2010). Perivascular ancestors of adult multipotent stem cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 1104–1109.

    PubMed  CAS  Google Scholar 

  45. Cossart, Y. E., Field, A. M., Cant, B., & Widdows, D. (1975). Parvovirus-like particles in human sera. Lancet, 1, 72–73.

    PubMed  CAS  Google Scholar 

  46. Crisan, M., Chen, C. W., Corselli, M., Andriolo, G., Lazzari, L., & Peault, B. (2009). Perivascular multipotent progenitor cells in human organs. Annals of the New York Academy of Sciences, 1176, 118–123.

    PubMed  CAS  Google Scholar 

  47. Crop MJ, Korevaar SS, de Kuiper R, Ijzermans JN, van Besouw NM, Baan CC, Weimar W, Hoogduijn MJ (2011) Human mesenchymal stem cells are susceptible to lysis by CD8+ T-cells and NK cells. Cell transplantation. doi:10.3727/096368910X564076.

  48. DelaRosa, O., Lombardo, E., Beraza, A., Mancheno-Corvo, P., Ramirez, C., Menta, R., et al. (2009). Requirement of IFN-gamma-mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose-derived stem cells. Tissue Engineering. Part A, 15, 2795–2806.

    PubMed  CAS  Google Scholar 

  49. Deuse, T., Stubbendorff, M., Tang-Quan, K., Phillips, N., Kay, M. A., Eiermann, T., et al. (2010) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell transplantation.

  50. Devine, S. M., Bartholomew, A. M., Mahmud, N., Nelson, M., Patil, S., Hardy, W., et al. (2001). Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Experimental Hematology, 29, 244–255.

    PubMed  CAS  Google Scholar 

  51. Devine, S. M., Cobbs, C., Jennings, M., Bartholomew, A., & Hoffman, R. (2003). Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood, 101, 2999–3001.

    PubMed  CAS  Google Scholar 

  52. Devine, S. M., & Hoffman, R. (2000). Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Current Opinion in Hematology, 7, 358–363.

    PubMed  CAS  Google Scholar 

  53. Di Nicola, M., Carlo-Stella, C., Magni, M., Milanesi, M., Longoni, P. D., Matteucci, P., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.

    PubMed  Google Scholar 

  54. Dickhut, A., Schwerdtfeger, R., Kuklick, L., Ritter, M., Thiede, C., Neubauer, A., et al. (2005). Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue. Annals of Hematology, 84, 722–727.

    PubMed  Google Scholar 

  55. Djouad, F., Bony, C., Haupl, T., Uze, G., Lahlou, N., Louis-Plence, P., et al. (2005). Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Research & Therapy, 7, R1304–R1315.

    CAS  Google Scholar 

  56. Djouad, F., Charbonnier, L. M., Bouffi, C., Louis-Plence, P., Bony, C., Apparailly, F., et al. (2007). Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells, 25, 2025–2032.

    PubMed  CAS  Google Scholar 

  57. Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J., et al. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102, 3837–3844.

    PubMed  CAS  Google Scholar 

  58. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    PubMed  CAS  Google Scholar 

  59. Dubovsky J, Daxberger H, Fritsch G, Printz D, Peters C, Matthes S, Gadner H, Lion T, Muller-Berat N (1999) Kinetics of chimerism during the early post-transplant period in pediatric patients with malignant and non-malignant hematologic disorders: implications for timely detection of engraftment, graft failure and rejection. Leukemia 13:2059, 2060–2059

    Google Scholar 

  60. Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S., & Galipeau, J. (2005). Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood, 106, 4057–4065.

    PubMed  CAS  Google Scholar 

  61. Fang, B., Li, N., Song, Y., Li, J., Zhao, R. C., & Ma, Y. (2009). Cotransplantation of haploidentical mesenchymal stem cells to enhance engraftment of hematopoietic stem cells and to reduce the risk of graft failure in two children with severe aplastic anemia. Pediatric Transplantation, 13, 499–502.

    PubMed  Google Scholar 

  62. Friedenstein, A. J., Chailakhjan, R. K., & Lalykina, K. S. (1970). The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 3, 393–403.

    PubMed  CAS  Google Scholar 

  63. Garcia-Olmo D, Herreros D, Pascual I, Pascual JA, Del-Valle E, Zorrilla J, De-La-Quintana P, Garcia-Arranz M, Pascual M (2009) Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Diseases of the colon and rectum 52, 79–86

  64. Ge, W., Jiang, J., Arp, J., Liu, W., Garcia, B., & Wang, H. (2010). Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation, 90, 1312–1320.

    PubMed  CAS  Google Scholar 

  65. Gerdoni, E., Gallo, B., Casazza, S., Musio, S., Bonanni, I., Pedemonte, E., et al. (2007). Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Annals of Neurology, 61, 219–227.

    PubMed  CAS  Google Scholar 

  66. Ghannam, S., Pene, J., Torcy-Moquet, G., Jorgensen, C., & Yssel, H. (2010). Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. Journal of Immunology, 185, 302–312.

    CAS  Google Scholar 

  67. Giuliani, M., Fleury, M., Vernochet, A., Ketroussi, F., Clay, D., Azzarone, B., et al. (2011). Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation. PloS One, 6, e19988.

    PubMed  CAS  Google Scholar 

  68. Glennie, S., Soeiro, I., Dyson, P. J., Lam, E. W., & Dazzi, F. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105, 2821–2827.

    PubMed  CAS  Google Scholar 

  69. Gluckman, J. C., Gluckman, E., Azogui, O., Guillet, J., Baldwin, W. M., Devergie, A., et al. (1982). Monocytotoxic antibodies after bone marrow transplantation in aplastic anemia. Transplantation, 33, 599–602.

    PubMed  CAS  Google Scholar 

  70. Gonzalez, M. A., Gonzalez-Rey, E., Rico, L., Buscher, D., & Delgado, M. (2009). Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology, 136, 978–989.

    PubMed  Google Scholar 

  71. Gordon, D., Pavlovska, G., Glover, C. P., Uney, J. B., Wraith, D., & Scolding, N. J. (2008). Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neuroscience Letters, 448, 71–73.

    PubMed  CAS  Google Scholar 

  72. Gotherstrom, C., Ringden, O., Westgren, M., Tammik, C., & Le Blanc, K. (2003). Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplantation, 32, 265–272.

    PubMed  CAS  Google Scholar 

  73. Groh, M. E., Maitra, B., Szekely, E., & Koc, O. N. (2005). Human mesenchymal stem cells require monocyte-mediated activation to suppress alloreactive T cells. Experimental Hematology, 33, 928–934.

    PubMed  CAS  Google Scholar 

  74. Handgretinger R, Lang P, Schumm M, Pfeiffer M, Gottschling S, Demirdelen B, Bader P, Kuci S, Klingebiel T, Niethammer D (2001) Immunological aspects of haploidentical stem cell transplantation in children. Annals of the New York Academy of Sciences 938: 340–357; 357–348

    Google Scholar 

  75. Hebart, H., & Einsele, H. (2004). Clinical aspects of CMV infection after stem cell transplantation. Human Immunology, 65, 432–436.

    PubMed  CAS  Google Scholar 

  76. Hernandez-Fuentes, M. P., Baker, R. J., & Lechler, R. I. (1999). The alloresponse. Reviews in Immunogenetics, 1, 282–296.

    PubMed  CAS  Google Scholar 

  77. Hiwase, S. D., Dyson, P. G., To, L. B., & Lewis, I. D. (2009). Cotransplantation of placental mesenchymal stromal cells enhances single and double cord blood engraftment in nonobese diabetic/severe combined immune deficient mice. Stem Cells, 27, 2293–2300.

    PubMed  Google Scholar 

  78. Hoogduijn MJ, Roemeling-van Rhijn M, Korevaar SS, Engela AU, Weimar W, Baan CC (2011) Immunological Aspects of Allogeneic and Autologous Mesenchymal Stem Cell Therapies. Human gene therapy. doi:10.1089/hum.2011.039.

  79. Hwang, J. H., Shim, S. S., Seok, O. S., Lee, H. Y., Woo, S. K., Kim, B. H., et al. (2009). Comparison of cytokine expression in mesenchymal stem cells from human placenta, cord blood, and bone marrow. Journal of Korean Medical Science, 24, 547–554.

    PubMed  CAS  Google Scholar 

  80. Ilancheran, S., Michalska, A., Peh, G., Wallace, E. M., Pera, M., & Manuelpillai, U. (2007). Stem cells derived from human fetal membranes display multilineage differentiation potential. Biology of Reproduction, 77, 577–588.

    PubMed  CAS  Google Scholar 

  81. In’t Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., Noort, W. A., Claas, F. H., Willemze, R., et al. (2003). Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 102, 1548–1549.

    Google Scholar 

  82. Isakova, I. A., Baker, K., DuTreil, M., Dufour, J., Gaupp, D., & Phinney, D. G. (2007). Age- and dose-related effects on MSC engraftment levels and anatomical distribution in the central nervous systems of nonhuman primates: identification of novel MSC subpopulations that respond to guidance cues in brain. Stem Cells, 25, 3261–3270.

    PubMed  CAS  Google Scholar 

  83. Iyer, S. S., & Rojas, M. (2008). Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opinion on Biological Therapy, 8, 569–581.

    PubMed  CAS  Google Scholar 

  84. Jiang, X. X., Zhang, Y., Liu, B., Zhang, S. X., Wu, Y., Yu, X. D., et al. (2005). Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 105, 4120–4126.

    PubMed  CAS  Google Scholar 

  85. Jones, B. J., Brooke, G., Atkinson, K., & McTaggart, S. J. (2007). Immunosuppression by placental indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells. Placenta, 28, 1174–1181.

    PubMed  CAS  Google Scholar 

  86. Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J. M., Kassis, I., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Archives of Neurology, 67, 1187–1194.

    PubMed  Google Scholar 

  87. Kassis, I., Grigoriadis, N., Gowda-Kurkalli, B., Mizrachi-Kol, R., Ben-Hur, T., Slavin, S., et al. (2008). Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Archives of Neurology, 65, 753–761.

    PubMed  Google Scholar 

  88. Keyser, K. A., Beagles, K. E., & Kiem, H. P. (2007). Comparison of mesenchymal stem cells from different tissues to suppress T-cell activation. Cell Transplantation, 16, 555–562.

    PubMed  Google Scholar 

  89. Khosrotehrani, K., Johnson, K. L., Cha, D. H., Salomon, R. N., & Bianchi, D. W. (2004). Transfer of fetal cells with multilineage potential to maternal tissue. JAMA: The Journal of the American Medical Association, 292, 75–80.

    CAS  Google Scholar 

  90. Kim, Y. J., Park, H. J., Lee, G., Bang, O. Y., Ahn, Y. H., Joe, E., et al. (2009). Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action. Glia, 57, 13–23.

    PubMed  Google Scholar 

  91. Koc, O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I., et al. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 18, 307–316.

    CAS  Google Scholar 

  92. Koc, O. N., & Lazarus, H. M. (2001). Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplantation, 27, 235–239.

    PubMed  CAS  Google Scholar 

  93. Koc, O. N., Peters, C., Aubourg, P., Raghavan, S., Dyhouse, S., DeGasperi, R., et al. (1999). Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Experimental Hematology, 27, 1675–1681.

    PubMed  CAS  Google Scholar 

  94. Kode, J. A., Mukherjee, S., Joglekar, M. V., & Hardikar, A. A. (2009). Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy, 11, 377–391.

    PubMed  CAS  Google Scholar 

  95. Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., Pittenger, M. F., et al. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 107, 2290–2293.

    PubMed  Google Scholar 

  96. Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V, Mazzinghi B, Pizzolo G, Vinante F, Romagnani P, Maggi E, Romagnani S, Annunziato F (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24: 386–398

    PubMed  CAS  Google Scholar 

  97. Krampera, M., Glennie, S., Dyson, J., Scott, D., Laylor, R., Simpson, E., et al. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101, 3722–3729.

    PubMed  CAS  Google Scholar 

  98. Krampera, M., Pizzolo, G., Aprili, G., & Franchini, M. (2006). Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone, 39, 678–683.

    PubMed  CAS  Google Scholar 

  99. Lanza, C., Morando, S., Voci, A., Canesi, L., Principato, M. C., Serpero, L. D., et al. (2009). Neuroprotective mesenchymal stem cells are endowed with a potent antioxidant effect in vivo. Journal of Neurochemistry, 110, 1674–1684.

    PubMed  CAS  Google Scholar 

  100. Lapierre, V., Auperin, A., Tayebi, H., Chabod, J., Saas, P., Michalet, M., et al. (2002). Increased presence of anti-HLA antibodies early after allogeneic granulocyte colony-stimulating factor-mobilized peripheral blood hematopoietic stem cell transplantation compared with bone marrow transplantation. Blood, 100, 1484–1489.

    PubMed  CAS  Google Scholar 

  101. Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S., & Caplan, A. I. (1995). Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplantation, 16, 557–564.

    PubMed  CAS  Google Scholar 

  102. Lazarus, H. M., Koc, O. N., Devine, S. M., Curtin, P., Maziarz, R. T., Holland, H. K., et al. (2005). Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation, 11, 389–398.

    Google Scholar 

  103. Le Blanc, K., Frassoni, F., Ball, L., Locatelli, F., Roelofs, H., Lewis, I., et al. (2008). Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet, 371, 1579–1586.

    PubMed  Google Scholar 

  104. Le Blanc, K., Rasmusson, I., Sundberg, B., Gotherstrom, C., Hassan, M., Uzunel, M., et al. (2004). Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 363, 1439–1441.

    PubMed  Google Scholar 

  105. Le Blanc, K., Samuelsson, H., Gustafsson, B., Remberger, M., Sundberg, B., Arvidson, J., et al. (2007). Transplantation of mesenchymal stem cells to enhance engraftment of hematopoietic stem cells. Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK, 21, 1733–1738.

    Google Scholar 

  106. Le Blanc, K., Tammik, C., Rosendahl, K., Zetterberg, E., & Ringden, O. (2003). HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 31, 890–896.

    PubMed  Google Scholar 

  107. Le Blanc, K., Tammik, L., Sundberg, B., Haynesworth, S. E., & Ringden, O. (2003). Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandinavian Journal of Immunology, 57, 11–20.

    PubMed  Google Scholar 

  108. Lee, M. Y., Huang, J. P., Chen, Y. Y., Aplin, J. D., Wu, Y. H., Chen, C. Y., et al. (2009). Angiogenesis in differentiated placental multipotent mesenchymal stromal cells is dependent on integrin alpha5beta1. PloS One, 4, e6913.

    PubMed  Google Scholar 

  109. Li CD, Zhang WY, Li HL, Jiang XX, Zhang Y, Tang P, Mao N (2005) Isolation and Identification of a Multilineage Potential Mesenchymal Cell from Human Placenta. Placenta.. doi:10.1016/j.placenta.2005.08.003.

  110. Li, G., Zhang, X. A., Wang, H., Wang, X., Meng, C. L., Chan, C. Y., et al. (2009). Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta: implication in the migration. Proteomics, 9, 20–30.

    PubMed  CAS  Google Scholar 

  111. Liang, J., Zhang, H., Hua, B., Wang, H., Lu, L., Shi, S., et al. (2010). Allogenic mesenchymal stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical study. Annals of the Rheumatic Diseases, 69, 1423–1429.

    PubMed  Google Scholar 

  112. Lissauer, D. M., Piper, K. P., Moss, P. A., & Kilby, M. D. (2009). Fetal microchimerism: the cellular and immunological legacy of pregnancy. Expert Reviews in Molecular Medicine, 11, e33.

    PubMed  Google Scholar 

  113. Liu, X. J., Zhang, J. F., Sun, B., Peng, H. S., Kong, Q. F., Bai, S. S., et al. (2009). Reciprocal effect of mesenchymal stem cell on experimental autoimmune encephalomyelitis is mediated by transforming growth factor-beta and interleukin-6. Clinical and Experimental Immunology, 158, 37–44.

    PubMed  CAS  Google Scholar 

  114. Ljungman, P. (2007). Risk assessment in haematopoietic stem cell transplantation: viral status. Best Practice & Research. Clinical Haematology, 20, 209–217.

    Google Scholar 

  115. Lu, X., Liu, T., Gu, L., Huang, C., Zhu, H., Meng, W., et al. (2009). Immunomodulatory effects of mesenchymal stem cells involved in favoring type 2 T cell subsets. Transplant Immunology, 22, 55–61.

    PubMed  CAS  Google Scholar 

  116. Maccario, R., Podesta, M., Moretta, A., Cometa, A., Comoli, P., Montagna, D., et al. (2005). Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 90, 516–525.

    PubMed  CAS  Google Scholar 

  117. Macmillan, M. L., Blazar, B. R., DeFor, T. E., & Wagner, J. E. (2009). Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplantation, 43, 447–454.

    PubMed  CAS  Google Scholar 

  118. Magatti, M., De Munari, S., Vertua, E., Nassauto, C., Albertini, A., Wengler, G. S., et al. (2009). Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes. Cell Transplantation, 18, 899–914.

    PubMed  Google Scholar 

  119. Maitra, B., Szekely, E., Gjini, K., Laughlin, M. J., Dennis, J., Haynesworth, S. E., et al. (2004). Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplantation, 33, 597–604.

    PubMed  CAS  Google Scholar 

  120. McBride, C., Gaupp, D., & Phinney, D. G. (2003). Quantifying levels of transplanted murine and human mesenchymal stem cells in vivo by real-time PCR. Cytotherapy, 5, 7–18.

    PubMed  CAS  Google Scholar 

  121. Meisel, R., Zibert, A., Laryea, M., Gobel, U., Daubener, W., & Dilloo, D. (2004). Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood, 103, 4619–4621.

    PubMed  CAS  Google Scholar 

  122. Mohyeddin Bonab, M., Yazdanbakhsh, S., Lotfi, J., Alimoghaddom, K., Talebian, F., Hooshmand, F., et al. (2007). Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iranian Journal of Immunology, 4, 50–57.

    PubMed  Google Scholar 

  123. Monini, P., Colombini, S., Sturzl, M., Goletti, D., Cafaro, A., Sgadari, C., et al. (1999). Reactivation and persistence of human herpesvirus-8 infection in B cells and monocytes by Th-1 cytokines increased in Kaposi’s sarcoma. Blood, 93, 4044–4058.

    PubMed  CAS  Google Scholar 

  124. Munn, D. H., Zhou, M., Attwood, J. T., Bondarev, I., Conway, S. J., Marshall, B., et al. (1998). Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 281, 1191–1193.

    PubMed  CAS  Google Scholar 

  125. Nasef, A., Mathieu, N., Chapel, A., Frick, J., Francois, S., Mazurier, C., et al. (2007). Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation, 84, 231–237.

    PubMed  CAS  Google Scholar 

  126. Nauta, A. J., Kruisselbrink, A. B., Lurvink, E., Willemze, R., & Fibbe, W. E. (2006). Mesenchymal stem cells inhibit generation and function of both CD34 + −derived and monocyte-derived dendritic cells. Journal of Immunology, 177, 2080–2087.

    CAS  Google Scholar 

  127. Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B., Lurvink, E. G., Willemze, R., & Fibbe, W. E. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108, 2114–2120.

    PubMed  CAS  Google Scholar 

  128. Noort, W. A., Kruisselbrink, A. B., in’t Anker, P. S., Kruger, M., van Bezooijen, R. L., de Paus, R. A., et al. (2002). Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Experimental Hematology, 30, 870–878.

    PubMed  Google Scholar 

  129. O’Donoghue, K., Chan, J., de la Fuente, J., Kennea, N., Sandison, A., Anderson, J. R., et al. (2004). Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet, 364, 179–182.

    PubMed  Google Scholar 

  130. O’Donoghue, K., Sultan, H. A., Al-Allaf, F. A., Anderson, J. R., Wyatt-Ashmead, J., & Fisk, N. M. (2008). Microchimeric fetal cells cluster at sites of tissue injury in lung decades after pregnancy. Reproductive Biomedicine Online, 16, 382–390.

    PubMed  Google Scholar 

  131. Oh, H., Loberiza, F. R., Jr., Zhang, M. J., Ringden, O., Akiyama, H., Asai, T., et al. (2005). Comparison of graft-versus-host-disease and survival after HLA-identical sibling bone marrow transplantation in ethnic populations. Blood, 105, 1408–1416.

    PubMed  CAS  Google Scholar 

  132. Ohtaki, H., Ylostalo, J. H., Foraker, J. E., Robinson, A. P., Reger, R. L., Shioda, S., et al. (2008). Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses. Proceedings of the National Academy of Sciences of the United States of America, 105, 14638–14643.

    PubMed  CAS  Google Scholar 

  133. Park, H. J., Lee, P. H., Bang, O. Y., Lee, G., & Ahn, Y. H. (2008). Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. Journal of Neurochemistry, 107, 141–151.

    PubMed  CAS  Google Scholar 

  134. Parolini, O., & Caruso, M. (2011). Review: Preclinical studies on placenta-derived cells and amniotic membrane: an update. Placenta, 32(Suppl 2), S186–S195.

    PubMed  Google Scholar 

  135. Parsons, C. H., Szomju, B., & Kedes, D. H. (2004). Susceptibility of human fetal mesenchymal stem cells to Kaposi sarcoma-associated herpesvirus. Blood, 104, 2736–2738.

    PubMed  CAS  Google Scholar 

  136. Passweg JR, Kuhne T, Gregor M, Favre G, Avoledo P, Tichelli A, Gratwohl A (2000) Increased stem cell dose, as obtained using currently available technology, may not be sufficient for engraftment of haploidentical stem cell transplants. Bone marrow transplantation 26, 1033–1036

  137. Pessina, A., Bonomi, A., Cocce, V., Bernardo, M. E., Cometa, A. M., Ferrari, M., et al. (2009). Assessment of human herpesvirus-6 infection in mesenchymal stromal cells ex vivo expanded for clinical use. Transplant Infectious Disease: An Official Journal of the Transplantation Society, 11, 491–496.

    CAS  Google Scholar 

  138. Petrini, I. P. S., Petrini, M., Fazzi, R., Trombi, L., & Galimberti, S. (2009). Mesenchymal cells inhibit expansion but not cytotoxicity exerted by gamma-delta T cells. Eur J Clin Invest Sep, 39, 813–818.

    CAS  Google Scholar 

  139. Phinney, D. G., Baddoo, M., Dutreil, M., Gaupp, D., Lai, W. T., & Isakova, I. A. (2006). Murine mesenchymal stem cells transplanted to the central nervous system of neonatal versus adult mice exhibit distinct engraftment kinetics and express receptors that guide neuronal cell migration. Stem Cells and Development, 15, 437–447.

    PubMed  CAS  Google Scholar 

  140. Phinney, D. G., & Prockop, D. J. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells, 25, 2896–2902.

    PubMed  Google Scholar 

  141. Plumas, J., Chaperot, L., Richard, M. J., Molens, J. P., Bensa, J. C., & Favrot, M. C. (2005). Mesenchymal stem cells induce apoptosis of activated T cells. Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, UK, 19, 1597–1604.

    CAS  Google Scholar 

  142. Pochampally, R. R., Neville, B. T., Schwarz, E. J., Li, M. M., & Prockop, D. J. (2004). Rat adult stem cells (marrow stromal cells) engraft and differentiate in chick embryos without evidence of cell fusion. Proceedings of the National Academy of Sciences of the United States of America, 101, 9282–9285.

    PubMed  CAS  Google Scholar 

  143. Poggi A PC, Prevosto C, Massaro AM, Negrini S, Urbani S, Pierri I, et al. (2005) Interaction between human NK cells and bone marrow stromal cells induces NK cell triggering: role of NKp30 and NKG2D receptors. J Immunol 175, 6352–6360.

    CAS  Google Scholar 

  144. Portmann-Lanz, C. B., Schoeberlein, A., Huber, A., Sager, R., Malek, A., Holzgreve, W., et al. (2006). Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. American Journal of Obstetrics and Gynecology, 194, 664–673.

    PubMed  CAS  Google Scholar 

  145. Potian, J. A., Aviv, H., Ponzio, N. M., Harrison, J. S., & Rameshwar, P. (2003). Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. Journal of Immunology, 171, 3426–3434.

    CAS  Google Scholar 

  146. Pozzi, S., Lisini, D., Podesta, M., Bernardo, M. E., Sessarego, N., Piaggio, G., et al. (2006). Donor multipotent mesenchymal stromal cells may engraft in pediatric patients given either cord blood or bone marrow transplantation. Experimental Hematology, 34, 934–942.

    PubMed  CAS  Google Scholar 

  147. Prigione, I., Benvenuto, F., Bocca, P., Battistini, L., Uccelli, A., & Pistoia, V. (2009). Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells, 27, 693–702.

    PubMed  CAS  Google Scholar 

  148. Rafei, M., Campeau, P. M., Aguilar-Mahecha, A., Buchanan, M., Williams, P., Birman, E., et al. (2009). Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. Journal of Immunology, 182, 5994–6002.

    CAS  Google Scholar 

  149. Ramasamy, R., Fazekasova, H., Lam, E. W., Soeiro, I., Lombardi, G., & Dazzi, F. (2007). Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation, 83, 71–76.

    PubMed  Google Scholar 

  150. Rasmusson, I., Le Blanc, K., Sundberg, B., & Ringden, O. (2007). Mesenchymal stem cells stimulate antibody secretion in human B cells. Scandinavian Journal of Immunology, 65, 336–343.

    PubMed  CAS  Google Scholar 

  151. Rasmusson, I., Ringden, O., Sundberg, B., & Le Blanc, K. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 76, 1208–1213.

    PubMed  Google Scholar 

  152. Rasmusson, I., Uhlin, M., Le Blanc, K., & Levitsky, V. (2007). Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes. Journal of Leukocyte Biology, 82, 887–893.

    PubMed  CAS  Google Scholar 

  153. Rieger, K., Marinets, O., Fietz, T., Korper, S., Sommer, D., Mucke, C., et al. (2005). Mesenchymal stem cells remain of host origin even a long time after allogeneic peripheral blood stem cell or bone marrow transplantation. Experimental Hematology, 33, 605–611.

    PubMed  CAS  Google Scholar 

  154. Ringden, O., Uzunel, M., Rasmusson, I., Remberger, M., Sundberg, B., Lonnies, H., et al. (2006). Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81, 1390–1397.

    PubMed  Google Scholar 

  155. Riordan, N. H., Ichim, T. E., Min, W. P., Wang, H., Solano, F., Lara, F., et al. (2009). Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. Journal of Translational Medicine, 7, 29.

    PubMed  Google Scholar 

  156. Ripoll, C. B., Flaat, M., Klopf-Eiermann, J., Fisher-Perkins, J. M., Trygg, C. B., Scruggs, B. A., et al. (2011). Mesenchymal lineage stem cells have pronounced anti-inflammatory effects in the twitcher mouse model of Krabbe’s disease. Stem Cells, 29, 67–77.

    PubMed  CAS  Google Scholar 

  157. Rollin, R., Alvarez-Lafuente, R., Marco, F., Jover, J. A., Hernandez-Garcia, C., Rodriguez-Navas, C., et al. (2007). Human parvovirus B19, varicella zoster virus, and human herpesvirus-6 in mesenchymal stem cells of patients with osteoarthritis: analysis with quantitative real-time polymerase chain reaction. Osteoarthritis and Cartilage/OARS, Osteoarthritis Research Society, 15, 475–478.

    PubMed  CAS  Google Scholar 

  158. Romieu-Mourez, R., Francois, M., Boivin, M. N., Stagg, J., & Galipeau, J. (2007). Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. Journal of Immunology, 179, 1549–1558.

    CAS  Google Scholar 

  159. Ryan, J. M., Barry, F., Murphy, J. M., & Mahon, B. P. (2007). Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clinical and Experimental Immunology, 149, 353–363.

    PubMed  CAS  Google Scholar 

  160. Santos, M. A., O’Donoghue, K., Wyatt-Ashmead, J., & Fisk, N. M. (2008). Fetal cells in the maternal appendix: a marker of inflammation or fetal tissue repair? Human Reproduction, 23, 2319–2325.

    PubMed  Google Scholar 

  161. Sato, K., Ozaki, K., Oh, I., Meguro, A., Hatanaka, K., Nagai, T., et al. (2007). Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109, 228–234.

    PubMed  CAS  Google Scholar 

  162. Schurgers, E., Kelchtermans, H., Mitera, T., Geboes, L., & Matthys, P. (2010). Discrepancy between the in vitro and in vivo effects of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Research and Therapy.

  163. Selmani, Z., Naji, A., Zidi, I., Favier, B., Gaiffe, E., Obert, L., et al. (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4 + CD25highFOXP3+ regulatory T cells. Stem Cells, 26, 212–222.

    PubMed  CAS  Google Scholar 

  164. Semenov, O. V., Koestenbauer, S., Riegel, M., Zech, N., Zimmermann, R., Zisch, A. H., et al. (2010). Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation. American Journal of Obstetrics and Gynecology, 202, 193.e191–193.e113.

    Google Scholar 

  165. Spaggiari, G. M., Abdelrazik, H., Becchetti, F., & Moretta, L. (2009). MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 113, 6576–6583.

    PubMed  CAS  Google Scholar 

  166. Spaggiari, G. M., Capobianco, A., Abdelrazik, H., Becchetti, F., Mingari, M. C., & Moretta, L. (2008). Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood, 111, 1327–1333.

    PubMed  CAS  Google Scholar 

  167. Spaggiari, G. M., Capobianco, A., Becchetti, S., Mingari, M. C., & Moretta, L. (2006). Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 107, 1484–1490.

    PubMed  CAS  Google Scholar 

  168. Stagg, J., Pommey, S., Eliopoulos, N., & Galipeau, J. (2006). Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood, 107, 2570–2577.

    PubMed  CAS  Google Scholar 

  169. Storb, R., Epstein, R. B., Rudolph, R. H., & Thomas, E. D. (1970). The effect of prior transfusion on marrow grafts between histocompatible canine siblings. Journal of Immunology, 105, 627–633.

    CAS  Google Scholar 

  170. Storb, R., Prentice, R. L., & Thomas, E. D. (1977). Marrow transplantation for treatment of aplastic anemia. An analysis of factors associated with graft rejection. The New England journal of medicine, 296, 61–66.

    PubMed  CAS  Google Scholar 

  171. Stussi, G., Halter, J., Schanz, U., & Seebach, J. D. (2006). ABO-histo blood group incompatibility in hematopoietic stem cell and solid organ transplantation. Transfusion and apheresis science: official journal of the World Apheresis Association: official journal of the European Society for Haemapheresis, 35, 59–69.

    Google Scholar 

  172. Stute, N., Fehse, B., Schroder, J., Arps, S., Adamietz, P., Held, K. R., et al. (2002). Human mesenchymal stem cells are not of donor origin in patients with severe aplastic anemia who underwent sex-mismatched allogeneic bone marrow transplant. Journal of Hematotherapy & Stem Cell Research, 11, 977–984.

    Google Scholar 

  173. Sudres, M., Norol, F., Trenado, A., Gregoire, S., Charlotte, F., Levacher, B., et al. (2006). Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. Journal of Immunology, 176, 7761–7767.

    CAS  Google Scholar 

  174. Sumitran-Holgersson, S. (2001). HLA-specific alloantibodies and renal graft outcome. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association - European Renal Association, 16, 897–904.

    CAS  Google Scholar 

  175. Sun, L., Akiyama, K., Zhang, H., Yamaza, T., Hou, Y., Zhao, S., et al. (2009). Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells, 27, 1421–1432.

    PubMed  CAS  Google Scholar 

  176. Sundin, M., Barrett, A. J., Ringden, O., Uzunel, M., Lonnies, H., Dackland, A. L., et al. (2009). HSCT recipients have specific tolerance to MSC but not to the MSC donor. Journal of Immunotherapy, 32, 755–764.

    PubMed  CAS  Google Scholar 

  177. Sundin, M., Le Blanc, K., Ringden, O., Barkholt, L., Omazic, B., Lergin, C., et al. (2006). The role of HLA mismatch, splenectomy and recipient Epstein-Barr virus seronegativity as risk factors in post-transplant lymphoproliferative disorder following allogeneic hematopoietic stem cell transplantation. Haematologica, 91, 1059–1067.

    PubMed  Google Scholar 

  178. Sundin, M., Lindblom, A., Orvell, C., Barrett, A. J., Sundberg, B., Watz, E., et al. (2008). Persistence of human parvovirus B19 in multipotent mesenchymal stromal cells expressing the erythrocyte P antigen: implications for transplantation. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation, 14, 1172–1179.

    Google Scholar 

  179. Sundin, M., Orvell, C., Rasmusson, I., Sundberg, B., Ringden, O., & Le Blanc, K. (2006). Mesenchymal stem cells are susceptible to human herpesviruses, but viral DNA cannot be detected in the healthy seropositive individual. Bone Marrow Transplantation, 37, 1051–1059.

    PubMed  CAS  Google Scholar 

  180. Sundin, M., Ringden, O., Sundberg, B., Nava, S., Gotherstrom, C., & Le Blanc, K. (2007). No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica, 92, 1208–1215.

    PubMed  CAS  Google Scholar 

  181. Tan, K. H., Zeng, X. X., Sasajala, P., Yeo, A., & Udolph, G. (2011). Fetomaternal microchimerism: Some answers and many new questions. Chimerism, 2, 16–18.

    PubMed  Google Scholar 

  182. Tomic, S., Djokic, J., Vasilijic, S., Vucevic, D., Todorovic, V., Supic, G., et al. (2011). Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells and Development, 20, 695–708.

    PubMed  CAS  Google Scholar 

  183. Toubai, T., Paczesny, S., Shono, Y., Tanaka, J., Lowler, K. P., Malter, C. T., et al. (2009). Mesenchymal stem cells for treatment and prevention of graft-versus-host disease after allogeneic hematopoietic cell transplantation. Current Stem Cell Research & Therapy, 4, 252–259.

    CAS  Google Scholar 

  184. Tse, W. T., Pendleton, J. D., Beyer, W. M., Egalka, M. C., & Guinan, E. C. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75, 389–397.

    PubMed  CAS  Google Scholar 

  185. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8, 726–736.

    PubMed  CAS  Google Scholar 

  186. Uccini, S., Sirianni, M. C., Vincenzi, L., Topino, S., Stoppacciaro, A., Lesnoni La Parola, I., et al. (1997). Kaposi’s sarcoma cells express the macrophage-associated antigen mannose receptor and develop in peripheral blood cultures of Kaposi’s sarcoma patients. The American Journal of Pathology, 150, 929–938.

    PubMed  CAS  Google Scholar 

  187. Vercelli, A., Mereuta, O. M., Garbossa, D., Muraca, G., Mareschi, K., Rustichelli, D., et al. (2008). Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiology of Disease, 31, 395–405.

    PubMed  CAS  Google Scholar 

  188. von Bonin, M., Stolzel, F., Goedecke, A., Richter, K., Wuschek, N., Holig, K., et al. (2009). Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium. Bone Marrow Transplantation, 43, 245–251.

    Google Scholar 

  189. Wolbank, S., Peterbauer, A., Fahrner, M., Hennerbichler, S., van Griensven, M., Stadler, G., et al. (2007). Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Engineering, 13, 1173–1183.

    PubMed  CAS  Google Scholar 

  190. Xu, G., Zhang, L., Ren, G., Yuan, Z., Zhang, Y., Zhao, R. C., et al. (2007). Immunosuppressive properties of cloned bone marrow mesenchymal stem cells. Cell Research, 17, 240–248.

    PubMed  CAS  Google Scholar 

  191. Xue, Q., Luan, X. Y., Gu, Y. Z., Wu, H. Y., Zhang, G. B., Yu, G. H., et al. (2010). The negative co-signaling molecule b7-h4 is expressed by human bone marrow-derived mesenchymal stem cells and mediates its T-cell modulatory activity. Stem Cells and Development, 19, 27–38.

    PubMed  CAS  Google Scholar 

  192. Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 106, 1755–1761.

    PubMed  CAS  Google Scholar 

  193. Zhang, J., Brodie, C., Li, Y., Zheng, X., Roberts, C., Lu, M., et al. (2009). Bone marrow stromal cell therapy reduces proNGF and p75 expression in mice with experimental autoimmune encephalomyelitis. Journal of the Neurological Sciences, 279, 30–38.

    PubMed  CAS  Google Scholar 

  194. Zhang, J., Li, Y., Chen, J., Cui, Y., Lu, M., Elias, S. B., et al. (2005). Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Experimental Neurology, 195, 16–26.

    PubMed  CAS  Google Scholar 

  195. Zhang, J., Li, Y., Lu, M., Cui, Y., Chen, J., Noffsinger, L., et al. (2006). Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. Journal of Neuroscience Research, 84, 587–595.

    PubMed  CAS  Google Scholar 

  196. Zhang, Q., Shi, S., Liu, Y., Uyanne, J., Shi, Y., & Le, A. D. (2009). Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. Journal of Immunology, 183, 7787–7798.

    CAS  Google Scholar 

  197. Zhang, X., Mitsuru, A., Igura, K., Takahashi, K., Ichinose, S., Yamaguchi, S., et al. (2006). Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochemical and Biophysical Research Communications, 340, 944–952.

    PubMed  CAS  Google Scholar 

  198. Zhang, Y., Li, C., Jiang, X., Zhang, S., Wu, Y., Liu, B., et al. (2004). Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Experimental Hematology, 32, 657–664.

    PubMed  CAS  Google Scholar 

  199. Zhao, P., Ise, H., Hongo, M., Ota, M., Konishi, I., & Nikaido, T. (2005). Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation, 79, 528–535.

    PubMed  Google Scholar 

  200. Zheng, Z. H., Li, X. Y., Ding, J., Jia, J. F., & Zhu, P. (2008). Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology (Oxford, England), 47, 22–30.

    CAS  Google Scholar 

  201. Zinocker, S., Wang, M. Y., Gaustad, P., Kvalheim, G., Rolstad, B., & Vaage, J. T. (2011). Mycoplasma contamination revisited: mesenchymal stromal cells harboring Mycoplasma hyorhinis potently inhibit lymphocyte proliferation in vitro. PloS One, 6, e16005.

    PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the financial support of KAIMRC Grant No. RC08/114, KACST Grant No. ARP-29-186, NHMRC Grant No. 509178, the RWH Foundation, Cecilia Kilkeary Foundation, Eirene Lucas Foundation, Harold & Cora Brennen Benevolent Trust (Equity Trustees), Jack Brockhoff Foundation, J & R McGauran Charitable Trust, Diana Brown Trust (Perpetual Trustees), Helen Macpherson Smith Trust, Thomas R & Rosalinda B Ditchfield Medical Research Endowment Fund and the Wenkart Foundation. There are no conflicts of interest with respect to the authors of this work.

Conflict of Interest Declaration

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill Kalionis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abumaree, M., Al Jumah, M., Pace, R.A. et al. Immunosuppressive Properties of Mesenchymal Stem Cells. Stem Cell Rev and Rep 8, 375–392 (2012). https://doi.org/10.1007/s12015-011-9312-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9312-0

Keywords

Navigation