Skip to main content

Advertisement

Log in

The Potential of Adipose Stem Cells in Regenerative Medicine

Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Adipose stem cells (ASCs) are an attractive and abundant stem cell source with therapeutic applicability in diverse fields for the repair and regeneration of acute and chronically damaged tissues. Importantly, unlike the human bone marrow stromal/stem stem cells (BMSCs) that are present at low frequency in the bone marrow, ASCs can be retrieved in high number from either liposuction aspirates or subcutaneous adipose tissue fragments and can easily be expanded in vitro. ASCs display properties similar to that observed in BMSCs and, upon induction, undergo at least osteogenic, chondrogenic, adipogenic and neurogenic, differentiation in vitro. Furthermore, ASCs have been shown to be immunoprivileged, prevent severe graft-versus-host disease in vitro and in vivo and to be genetically stable in long-term culture. They have also proven applicability in other functions, such as providing hematopoietic support and gene transfer. Due to these characteristics, ASCs have rapidly advanced into clinical trials for treatment of a broad range of conditions. As cell therapies are becoming more frequent, clinical laboratories following good manufacturing practices are needed. At the same time as laboratory processes become more extensive, the need for control in the processing laboratory grows consequently involving a greater risk of complications and possibly adverse events for the recipient. Therefore, the safety, reproducibility and quality of the stem cells must thoroughly be examined prior to extensive use in clinical applications. In this review, some of the aspects of examination on ASCs in vitro and the utilization of ASCs in clinical studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    PubMed  CAS  Google Scholar 

  2. Gimble, J., & Guilak, F. (2003). Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy, 5, 362–369.

    PubMed  Google Scholar 

  3. Bongso, A., Fong, C. Y., Ng, S. C., et al. (1994). Isolation and culture of inner cell mass cells from human blastocysts. Human Reproduction, 9, 2110–2117.

    PubMed  CAS  Google Scholar 

  4. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147.

    PubMed  CAS  Google Scholar 

  5. Yamanaka, S. (2008). Pluripotency and nuclear reprogramming. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 363, 2079–2087.

    PubMed  CAS  Google Scholar 

  6. Amabile, G., & Meissner, A. (2009). Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends in Molecular Medicine, 15, 59–68.

    PubMed  CAS  Google Scholar 

  7. Cyranoski, D. (2008). Stem cells: 5 things to know before jumping on the iPS bandwagon. Nature, 452, 406–408.

    PubMed  CAS  Google Scholar 

  8. Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., et al. (1968). Heterotopic of bone marrow.Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6, 230–247.

    PubMed  CAS  Google Scholar 

  9. Jaiswal, R. K., Jaiswal, N., Bruder, S. P., et al. (2000). Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. The Journal of Biological Chemistry, 275, 9645–9652.

    PubMed  CAS  Google Scholar 

  10. Johnstone, B., Hering, T. M., Caplan, A. I., et al. (1998). In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Experimental Cell Research, 238, 265–272.

    PubMed  CAS  Google Scholar 

  11. Zuk, P. A. (2008). Tissue engineering craniofacial defects with adult stem cells? Are we ready yet? Pediatric Research, 63, 478–486.

    PubMed  Google Scholar 

  12. Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7, 211–228.

    PubMed  CAS  Google Scholar 

  13. Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    PubMed  CAS  Google Scholar 

  14. Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100, 1249–1260.

    PubMed  CAS  Google Scholar 

  15. Planat-Benard, V., Silvestre, J. S., Cousin, B., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 109, 656–663.

    PubMed  Google Scholar 

  16. Safford, K. M., Hicok, K. C., Safford, S. D., et al. (2002). Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 294, 371–379.

    PubMed  CAS  Google Scholar 

  17. Seo, M. J., Suh, S. Y., Bae, Y. C., et al. (2005). Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochemical and Biophysical Research Communications, 328, 258–264.

    PubMed  CAS  Google Scholar 

  18. Timper, K., Seboek, D., Eberhardt, M., et al. (2006). Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochemical and Biophysical Research Communications, 341, 1135–1140.

    PubMed  CAS  Google Scholar 

  19. Winter, A., Breit, S., Parsch, D., et al. (2003). Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis and Rheumatism, 48, 418–429.

    PubMed  CAS  Google Scholar 

  20. Gonzalez-Rey, E., Gonzalez, M. A., Varela, N., et al. (2010). Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis. Annals of the Rheumatic Diseases, 69, 241–248.

    PubMed  CAS  Google Scholar 

  21. Gonzalez-Rey, E., Anderson, P., Gonzalez, M. A., et al. (2009). Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut, 58, 929–939.

    PubMed  CAS  Google Scholar 

  22. Meza-Zepeda, L. A., Noer, A., Dahl, J. A., et al. (2008). High-resolution analysis of genetic stability of human adipose tissue stem cells cultured to senescence. Journal of Cellular and Molecular Medicine, 12, 553–563.

    PubMed  CAS  Google Scholar 

  23. Dahl, J. A., Duggal, S., Coulston, N., et al. (2008). Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. The International Journal of Developmental Biology, 52, 1033–1042.

    PubMed  CAS  Google Scholar 

  24. Fang, B., Song, Y., Liao, L., et al. (2007). Favorable response to human adipose tissue-derived mesenchymal stem cells in steroid-refractory acute graft-versus-host disease. Transplantation Proceedings, 39, 3358–3362.

    PubMed  CAS  Google Scholar 

  25. Fang, B., Song, Y., Lin, Q., et al. (2007). Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children. Pediatric Transplantation, 11, 814–817.

    PubMed  CAS  Google Scholar 

  26. Fang, B., Song, Y., Zhao, R. C., et al. (2007). Using human adipose tissue-derived mesenchymal stem cells as salvage therapy for hepatic graft-versus-host disease resembling acute hepatitis. Transplantation Proceedings, 39, 1710–1713.

    PubMed  CAS  Google Scholar 

  27. Fang, B., Song, Y. P., Liao, L. M., et al. (2006). Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells. Bone Marrow Transplantation, 38, 389–390.

    PubMed  CAS  Google Scholar 

  28. Garcia-Olmo, D., Garcia-Arranz, M., & Herreros, D. (2008). Expanded adipose-derived stem cells for the treatment of complex perianal fistula including Crohn’s disease. Expert Opinion on Biological Therapy, 8, 1417–1423.

    PubMed  CAS  Google Scholar 

  29. Riordan, N. H., Ichim, T. E., Min, W. P., et al. (2009). Non-expanded adipose stromal vascular fraction cell therapy for multiple sclerosis. Journal of Translational Medicine, 7, 29.

    PubMed  Google Scholar 

  30. Yoshimura, K., Sato, K., Aoi, N., et al. (2008). Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plastic Surgery, 32, 48–55. discussion 56–47.

    PubMed  Google Scholar 

  31. Yoshimura, K., Sato, K., Aoi, N., et al. (2008). Cell-assisted lipotransfer for facial lipoatrophy: efficacy of clinical use of adipose-derived stem cells. Dermatologic Surgery, 34, 1178–1185.

    PubMed  CAS  Google Scholar 

  32. Lendeckel, S., Jodicke, A., Christophis, P., et al. (2004). Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. Journal of Craniomaxillofacial Surgery, 32, 370–373.

    Google Scholar 

  33. Mesimäki, K., Lindroos, B., Törnwall, J., et al. (2009). Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. International Journal of Oral and Maxillofacial Surgery, 38, 201–209.

    PubMed  Google Scholar 

  34. Becker, A. J., McCulloch, E. A., & Till, J. E. (1963). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, 197, 452–454.

    PubMed  CAS  Google Scholar 

  35. Orkin, S. H. (2000). Diversification of haematopoietic stem cells to specific lineages. Nature Reviews. Genetics, 1, 57–64.

    PubMed  CAS  Google Scholar 

  36. Lagasse, E., Connors, H., Al-Dhalimy, M., et al. (2000). Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Natural Medicines, 6, 1229–1234.

    CAS  Google Scholar 

  37. Piersma, A. H., Brockbank, K. G., Ploemacher, R. E., et al. (1985). Characterization of fibroblastic stromal cells from murine bone marrow. Experimental Hematology, 13, 237–243.

    PubMed  CAS  Google Scholar 

  38. Owen, M. (1988). Marrow stromal stem cells. Journal of Cell Science Supplement, 10, 63–76.

    PubMed  CAS  Google Scholar 

  39. Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9, 641–650.

    PubMed  CAS  Google Scholar 

  40. Pereira, R. F., Halford, K. W., O’Hara, M. D., et al. (1995). Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proceedings of the National Academy of Sciences of the United States of America, 92, 4857–4861.

    PubMed  CAS  Google Scholar 

  41. Pereira, R. F., O’Hara, M. D., Laptev, A. V., et al. (1998). Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proceedings of the National Academy of Sciences of the United States of America, 95, 1142–1147.

    PubMed  CAS  Google Scholar 

  42. Horwitz, E. M., Gordon, P. L., Koo, W. K., et al. (2002). Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proceedings of the National Academy of Sciences of the United States of America, 99, 8932–8937.

    PubMed  CAS  Google Scholar 

  43. Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., et al. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Natural Medicines, 5, 309–313.

    CAS  Google Scholar 

  44. Horwitz, E. M., Prockop, D. J., Gordon, P. L., et al. (2001). Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood, 97, 1227–1231.

    PubMed  CAS  Google Scholar 

  45. Keating, A., Berkahn, L., & Filshie, R. (1998). A Phase I study of the transplantation of genetically marked autologous bone marrow stromal cells. Human Gene Therapy, 9, 591–600.

    PubMed  CAS  Google Scholar 

  46. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    PubMed  CAS  Google Scholar 

  47. Horwitz, E. M., Le Blanc, K., Dominici, M., et al. (2005). Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy, 7, 393–395.

    PubMed  CAS  Google Scholar 

  48. Caplan, A. I., & Bruder, S. P. (2001). Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends in Molecular Medicine, 7, 259–264.

    PubMed  CAS  Google Scholar 

  49. Brinchmann, J. E. (2008). Expanding autologous multipotent mesenchymal bone marrow stromal cells. Journal of the Neurological Sciences, 265, 127–130.

    PubMed  CAS  Google Scholar 

  50. Lindroos, B., Mäenpää, K., Ylikomi, T., et al. (2008). Characterisation of human dental stem cells and buccal mucosa fibroblasts. Biochemical and Biophysical Research Communications, 368, 329–335.

    PubMed  CAS  Google Scholar 

  51. Grace, W., Gerold, S., Friedrich, H., et al. (2000). Stem Cell Plasticity in Mammals and Transdetermination in Drosophila: common themes? Stem Cells, 18, 409–414.

    Google Scholar 

  52. Donald, G. P., & Darwin, J. P. (2007). Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair - current views. Stem Cells, 25, 2896–2902.

    Google Scholar 

  53. Kahn, A. J., & Simmons, D. J. (1977). Chondrocyte-to-osteocyte transformation in grafts of perichondrium-free epiphyseal cartilage. Clinical Orthopaedics and Related Research 299–304.

  54. Bennett, J. H., Joyner, C. J., Triffitt, J. T., et al. (1991). Adipocytic cells cultured from marrow have osteogenic potential. Journal of Cell Science, 99, 131–139.

    PubMed  Google Scholar 

  55. Rada, T., Reis, R. L., & Gomes, M. E. (2009). Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Engineering. Part B: Reviews, 15, 113–125.

    CAS  Google Scholar 

  56. Huang, J. I., Zuk, P. A., Jones, N. F., et al. (2004). Chondrogenic potential of multipotential cells from human adipose tissue. Plastic and Reconstructive Surgery, 113, 585–594.

    PubMed  Google Scholar 

  57. Daher, S. R., Johnstone, B. H., Phinney, D. G., et al. (2008). Adipose stromal/stem cells: basic and translational advances: the IFATS collection. Stem Cells, 26, 2664–2665.

    PubMed  Google Scholar 

  58. Fraser, J. K., Wulur, I., Alfonso, Z., et al. (2006). Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology, 24, 150–154.

    PubMed  CAS  Google Scholar 

  59. Strem, B. M., Hicok, K. C., Zhu, M., et al. (2005). Multipotential differentiation of adipose tissue-derived stem cells. The Keio Journal of Medicine, 54, 132–141.

    PubMed  CAS  Google Scholar 

  60. Tremolada, C., Palmieri, G., & Ricordi, C. Adipocyte transplantation and stem cells: plastic surgery meets regenerative medicine. Cell Transplantation

  61. Lin, K., Matsubara, Y., Masuda, Y., et al. (2008). Characterization of adipose tissue-derived cells isolated with the Celution system. Cytotherapy, 10, 417–426.

    PubMed  CAS  Google Scholar 

  62. Lin, K., Matsubara, Y., Masuda, Y., et al. (2008). Characterization of adipose tissue-derived cells isolated with the Celution system. Cytotherapy, 10, 417–426.

    PubMed  CAS  Google Scholar 

  63. Yamamoto, T., Gotoh, M., Hattori, R., et al. Periurethral injection of autologous adipose-derived stem cells for the treatment of stress urinary incontinence in patients undergoing radical prostatectomy: report of two initial cases. International Journal of Urology Urol 17, 75–82.

  64. Duckers, H. J., Pinkernell, K., Milstein, A. M., et al. (2006). The bedside celution system for isolation of adipose derived regenerative cells. EuroIntervention, 2, 395–398.

    PubMed  Google Scholar 

  65. Tissue Genesis Cell Isolation System. Tissue Genesis Incorporated. February 10th, 2009. Available at: http://www.tissuegenesis.com/.

  66. Cytori’s Celution® 700 System to be Regulated as a Medical Device by U.S. FDA. 20 Jul 2009. Available at: http://www.medicalnewstoday.com/articles/158091.php.

  67. Fraser, J. K., Wulur, I., Alfonso, Z., et al. (2007). Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy, 9, 459–467.

    PubMed  CAS  Google Scholar 

  68. Oedayrajsingh-Varma, M. J., van Ham, S. M., Knippenberg, M., et al. (2006). Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 8, 166–177.

    PubMed  CAS  Google Scholar 

  69. Jurgens, W. J., Oedayrajsingh-Varma, M. J., Helder, M. N., et al. (2008). Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell and Tissue Research, 332, 415–426.

    PubMed  Google Scholar 

  70. von Heimburg, D., Hemmrich, K., Haydarlioglu, S., et al. (2004). Comparison of viable cell yield from excised versus aspirated adipose tissue. Cells, Tissues, Organs, 178, 87–92.

    Google Scholar 

  71. Rodbell, M. (1964). Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. The Journal of Biological Chemistry, 239, 375–380.

    PubMed  CAS  Google Scholar 

  72. Katz, A. J., Llull, R., Hedrick, M. H., et al. (1999). Emerging approaches to the tissue engineering of fat. Clinics in Plastic Surgery, 26, 587–603. viii.

    PubMed  CAS  Google Scholar 

  73. Katz, A. J., Tholpady, A., Tholpady, S. S., et al. (2005). Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells, 23, 412–423.

    PubMed  CAS  Google Scholar 

  74. Katz, A. J., Hedrick, M. H., Llull, R., et al. (2001). A novel device for the simple and efficient refinement of liposuctioned tissue. Plastic and Reconstructive Surgery, 107, 595–597.

    PubMed  CAS  Google Scholar 

  75. Gronthos, S., Franklin, D. M., Leddy, H. A., et al. (2001). Surface protein characterization of human adipose tissue-derived stromal cells. Journal of Cellular Physiology, 189, 54–63.

    PubMed  CAS  Google Scholar 

  76. Boquest, A. C., Shahdadfar, A., Brinchmann, J. E., et al. (2006). Isolation of stromal stem cells from human adipose tissue. Methods in Molecular Biology, 325, 35–46.

    PubMed  Google Scholar 

  77. Simmons, P. J., & Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood, 78, 55–62.

    PubMed  CAS  Google Scholar 

  78. Quirici, N., Soligo, D., Bossolasco, P., et al. (2002). Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Experimental Hematology, 30, 783–791.

    PubMed  CAS  Google Scholar 

  79. Gronthos, S., Fitter, S., Diamond, P., et al. (2007). A novel monoclonal antibody (STRO-3) identifies an isoform of tissue nonspecific alkaline phosphatase expressed by multipotent bone marrow stromal stem cells. Stem Cells and Development, 16, 953–963.

    PubMed  CAS  Google Scholar 

  80. Battula, V. L., Treml, S., Bareiss, P. M., et al. (2009). Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica, 94, 173–184.

    PubMed  CAS  Google Scholar 

  81. Tapp, H., Hanley, E. N., Jr., Patt, J. C., et al. (2009). Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Experimental Biology and Medicine (Maywood), 234, 1–9.

    CAS  Google Scholar 

  82. Garcia-Castro, J., Trigueros, C., Madrenas, J., et al. (2008). Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool. Journal of Cellular and Molecular Medicine, 12, 2552–2565.

    PubMed  CAS  Google Scholar 

  83. De Ugarte, D. A., Alfonso, Z., Zuk, P. A., et al. (2003). Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunology Letters, 89, 267–270.

    PubMed  Google Scholar 

  84. McIntosh, K., Zvonic, S., Garrett, S., et al. (2006). The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells, 24, 1246–1253.

    PubMed  CAS  Google Scholar 

  85. Mitchell, J. B., McIntosh, K., Zvonic, S., et al. (2006). Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 24, 376–385.

    PubMed  Google Scholar 

  86. Simmons, P. J., Masinovsky, B., Longenecker, B. M., et al. (1992). Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood, 80, 388–395.

    PubMed  CAS  Google Scholar 

  87. Sudhoff, T., & Sohngen, D. (2002). Circulating endothelial adhesion molecules (sE-selectin, sVCAM-1 and sICAM-1) during rHuG-CSF-stimulated stem cell mobilization. Journal of Hematotherapy & Stem Cell Research, 11, 147–151.

    CAS  Google Scholar 

  88. Otto, T. C., & Lane, M. D. (2005). Adipose development: from stem cell to adipocyte. Critical Reviews in Biochemistry and Molecular Biology, 40, 229–242.

    PubMed  CAS  Google Scholar 

  89. Deslex, S., Negrel, R., Vannier, C., et al. (1987). Differentiation of human adipocyte precursors in a chemically defined serum-free medium. International Journal of Obesity, 11, 19–27.

    PubMed  CAS  Google Scholar 

  90. Hauner, H., Entenmann, G., Wabitsch, M., et al. (1989). Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. Journal of Clinical Investigation, 84, 1663–1670.

    PubMed  CAS  Google Scholar 

  91. Sen, A., Lea-Currie, Y. R., Sujkowska, D., et al. (2001). Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. Journal of Cellular Biochemistry, 81, 312–319.

    PubMed  CAS  Google Scholar 

  92. Christodoulides, C., Lagathu, C., Sethi, J. K., et al. (2009). Adipogenesis and WNT signalling. Trends in Endocrinology and Metabolism, 20, 16–24.

    PubMed  CAS  Google Scholar 

  93. Moldes, M., Zuo, Y., Morrison, R. F., et al. (2003). Peroxisome-proliferator-activated receptor gamma suppresses Wnt/beta-catenin signalling during adipogenesis. The Biochemical Journal, 376, 607–613.

    PubMed  CAS  Google Scholar 

  94. Won Park, K., Halperin, D. S., & Tontonoz, P. (2008). Before they were fat: adipocyte progenitors. Cell Metabolism, 8, 454–457.

    Google Scholar 

  95. Gregoire, F. M., Smas, C. M., & Sul, H. S. (1998). Understanding adipocyte differentiation. Physiological Reviews, 78, 783–809.

    PubMed  CAS  Google Scholar 

  96. Gimble, J. M., Morgan, C., Kelly, K., et al. (1995). Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. Journal of Cellular Biochemistry, 58, 393–402.

    PubMed  CAS  Google Scholar 

  97. Lindroos, B., Aho, K.-L., Kuokkanen, H., et al. (2010). Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Engineering Part A, 16, 2281–2294.

    PubMed  CAS  Google Scholar 

  98. Lindroos, B., Boucher, S., Chase, L., et al. (2009). Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro. Cytotherapy, 11, 958–972.

    PubMed  CAS  Google Scholar 

  99. Rajala, K., Lindroos, B., Hussein, S. M., et al. A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS One, 5, e10246.

  100. Zhou, S., Eid, K., & Glowacki, J. (2004). Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. Journal of Bone and Mineral Research, 19, 463–470.

    PubMed  CAS  Google Scholar 

  101. Takada, I., Kouzmenko, A. P., & Kato, S. (2009). Molecular switching of osteoblastogenesis versus adipogenesis: implications for targeted therapies. Expert Opinion on Therapeutic Targets, 13, 593–603.

    PubMed  CAS  Google Scholar 

  102. Aubin, J. E., Liu, F., Malaval, L., et al. (1995). Osteoblast and chondroblast differentiation. Bone, 17, 77S–83S.

    PubMed  CAS  Google Scholar 

  103. Liu, T. M., Martina, M., Hutmacher, D. W., et al. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells, 25, 750–760.

    PubMed  Google Scholar 

  104. Aubin, J. E. (2001). Regulation of osteoblast formation and function. Reviews in Endocrine & Metabolic Disorders, 2, 81–94.

    CAS  Google Scholar 

  105. Madras, N., Gibbs, A. L., Zhou, Y., et al. (2002). Modeling stem cell development by retrospective analysis of gene expression profiles in single progenitor-derived colonies. Stem Cells, 20, 230–240.

    PubMed  CAS  Google Scholar 

  106. Halvorsen, Y. D., Franklin, D., Bond, A. L., et al. (2001). Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Engineering, 7, 729–741.

    PubMed  CAS  Google Scholar 

  107. Halvorsen, Y. C., Wilkison, W. O., & Gimble, J. M. (2000). Adipose-derived stromal cells–their utility and potential in bone formation. International Journal of Obesity and Related Metabolic Disorders, 24(Suppl 4), S41–S44.

    PubMed  CAS  Google Scholar 

  108. Aksu, A. E., Rubin, J. P., Dudas, J. R., et al. (2008). Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Annals of Plastic Surgery, 60, 306–322.

    PubMed  CAS  Google Scholar 

  109. Zhu, M., Kohan, E., Bradley, J., et al. (2009). The effect of age on osteogenic, adipogenic and proliferative potential of female adipose-derived stem cells. Journal of Tissue Engineering and Regenerative Medicine, 3, 290–301.

    PubMed  CAS  Google Scholar 

  110. Denker, A. E., Nicoll, S. B., & Tuan, R. S. (1995). Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. Differentiation, 59, 25–34.

    PubMed  CAS  Google Scholar 

  111. Wei, Y., Sun, X., Wang, W., et al. (2007). Adipose-derived stem cells and chondrogenesis. Cytotherapy, 9, 712–716.

    PubMed  CAS  Google Scholar 

  112. Awad, H. A., Wickham, M. Q., Leddy, H. A., et al. (2004). Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 25, 3211–3222.

    PubMed  CAS  Google Scholar 

  113. Knippenberg, M., Helder, M. N., Zandieh Doulabi, B., et al. (2006). Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochemical and Biophysical Research Communications, 342, 902–908.

    PubMed  CAS  Google Scholar 

  114. Diekman, B. O., Estes, B. T., & Guilak, F. (2010). The effects of BMP6 overexpression on adipose stem cell chondrogenesis: Interactions with dexamethasone and exogenous growth factors. Journal of Biomedical Materials Research Part A, 93A, 994–1003.

    CAS  Google Scholar 

  115. Estes, B. T., Wu, A. W., & Guilak, F. (2006). Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis and Rheumatism, 54, 1222–1232.

    PubMed  CAS  Google Scholar 

  116. Erickson, G. R., Gimble, J. M., Franklin, D. M., et al. (2002). Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochemical and Biophysical Research Communications, 290, 763–769.

    PubMed  CAS  Google Scholar 

  117. Koga, H., Engebretsen, L., Brinchmann, J. E., et al. (2009). Mesenchymal stem cell-based therapy for cartilage repair: a review. Knee Surgery, Sports Traumatology, Arthroscopy.

  118. Huang, J. I., Kazmi, N., Durbhakula, M. M., et al. (2005). Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison. Journal of Orthopaedic Research, 23, 1383–1389.

    PubMed  CAS  Google Scholar 

  119. Im, G. I., Shin, Y. W., & Lee, K. B. (2005). Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells? Osteoarthritis and Cartilage, 13, 845–853.

    PubMed  Google Scholar 

  120. Kim, H. J., & Im, G. I. (2009). Chondrogenic differentiation of adipose tissue-derived mesenchymal stem cells: greater doses of growth factor are necessary. Journal of Orthopaedic Research, 27, 612–619.

    PubMed  Google Scholar 

  121. van Dijk, A., Niessen, H. W., Zandieh Doulabi, B., et al. (2008). Differentiation of human adipose-derived stem cells towards cardiomyocytes is facilitated by laminin. Cell and Tissue Research, 334, 457–467.

    PubMed  Google Scholar 

  122. Bai, X., Pinkernell, K., Song, Y. H., et al. (2007). Genetically selected stem cells from human adipose tissue express cardiac markers. Biochemical and Biophysical Research Communications, 353, 665–671.

    PubMed  CAS  Google Scholar 

  123. Song, Y. H., Gehmert, S., Sadat, S., et al. (2007). VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochemical and Biophysical Research Communications, 354, 999–1003.

    PubMed  CAS  Google Scholar 

  124. Valina, C., Pinkernell, K., Song, Y. H., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28, 2667–2677.

    PubMed  Google Scholar 

  125. Mizuno, H., Zuk, P. A., Zhu, M., et al. (2002). Myogenic differentiation by human processed lipoaspirate cells. Plastic and Reconstructive Surgery, 109, 199–209. discussion 210–191.

    PubMed  Google Scholar 

  126. Madonna, R., Geng, Y.-J., & De Caterina, R. (2009). Adipose tissue-derived stem cells: characterization and potential for cardiovascular repair. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1723–1729.

    PubMed  CAS  Google Scholar 

  127. Miranville, A., Heeschen, C., Sengenes, C., et al. (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 110, 349–355.

    PubMed  CAS  Google Scholar 

  128. De Francesco, F., Tirino, V., Desiderio, V., et al. (2009). Human CD34+/CD90+ ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries. PLoS ONE, 4, e6537.

    PubMed  Google Scholar 

  129. Boquest, A. C., Noer, A., Sorensen, A. L., et al. (2007). CpG methylation profiles of endothelial cell-specific gene promoter regions in adipose tissue stem cells suggest limited differentiation potential toward the endothelial cell lineage. Stem Cells, 25, 852–861.

    PubMed  CAS  Google Scholar 

  130. Rehman, J., Traktuev, D., Li, J., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.

    PubMed  Google Scholar 

  131. Kim, S. C., Han, D. J., & Lee, J. Y. Adipose tissue derived stem cells for regeneration and differentiation into insulin-producing cells. Current Stem Cell Research and Therapy, 5, 190–194.

  132. Lee, J., Han, D. J., & Kim, S. C. (2008). In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochemical and Biophysical Research Communications, 375, 547–551.

    PubMed  CAS  Google Scholar 

  133. Kang, H. M., Kim, J., Park, S., et al. (2009). Insulin-secreting cells from human eyelid-derived stem cells alleviate type I diabetes in immunocompetent mice. Stem Cells, 27, 1999–2008.

    PubMed  CAS  Google Scholar 

  134. Lin, G., Wang, G., Liu, G., et al. (2009). Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem Cells and Development, 18, 1399–1406.

    PubMed  CAS  Google Scholar 

  135. Talens-Visconti, R., Bonora, A., Jover, R., et al. (2006). Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World Journal of Gastroenterology, 12, 5834–5845.

    PubMed  CAS  Google Scholar 

  136. Dhar, S., Yoon, E. S., Kachgal, S., et al. (2007). Long-term maintenance of neuronally differentiated human adipose tissue-derived stem cells. Tissue Engineering, 13, 2625–2632.

    PubMed  CAS  Google Scholar 

  137. Ashjian, P. H., Elbarbary, A. S., Edmonds, B., et al. (2003). In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plastic and Reconstructive Surgery, 111, 1922–1931.

    PubMed  Google Scholar 

  138. Aluigi, M. G., Coradeghini, R., Guida, C., et al. (2009). Pre-adipocytes commitment to neurogenesis 1: preliminary localisation of cholinergic molecules. Cell Biology International, 33, 594–601.

    PubMed  CAS  Google Scholar 

  139. Burger, S. R. (2000). Design and operation of a current good manufacturing practices cell-engineering laboratory. Cytotherapy, 2, 111–122.

    PubMed  CAS  Google Scholar 

  140. Harvath, L. (2000). Food and Drug Administration’s proposed approach to regulation of hematopoietic stem/progenitor cell products for therapeutic use. Transfusion Medicine Reviews, 14, 104–111.

    PubMed  CAS  Google Scholar 

  141. DIRECTIVE 2001/83/EC of the European Parliament and of the Council on the Community Code Relating to Medicinal Products for Human Use. The European Parliament and of the Council of the Community. Available at: http://www.emea.europa.eu/pdfs/human/pmf/2001-83-EC.pdf.

  142. Guideline on Human Cell-Based Medicinal Products. EMEA, Committee for Human Medicinal Products. Available at: http://www.emea.europa.eu/pdfs/human/cpwp/41086906enfin.pdf.

  143. Rehmann, W., Morgan, G. The Regulation of Advanced Therapies: Perspectives from the EU [Regulatory Feature]. February 2009. Available at: http://www.taylorwessing.com/uploads/tx_siruplawyermanagement/The_Regulation_of_Advanced_Therapies.pdf.

  144. Halme, D. G., & Kessler, D. A. (2006). FDA regulation of stem-cell-based therapies. The New England Journal of Medicine, 355, 1730–1735.

    PubMed  CAS  Google Scholar 

  145. Regulation (EC) no 1394/2007 of the European Parliament and of the Council. Official Journal of the European Union. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:324:0121:0137:en:PDF.

  146. Sensebé, L., Krampera, M., Schrezenmeier, H., et al. (2010). Mesenchymal stem cells for clinical application. Vox Sanguinis, 98, 93–107.

    PubMed  Google Scholar 

  147. Kocaoemer, A., Kern, S., Kluter, H., et al. (2007). Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells, 25, 1270–1278.

    PubMed  CAS  Google Scholar 

  148. Bieback, K., Hecker, A., Kocaomer, A., et al. (2009). Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells, 27, 2331–2341.

    PubMed  CAS  Google Scholar 

  149. Herrera, B., & Inman, G. J. (2009). A rapid and sensitive bioassay for the simultaneous measurement of multiple bone morphogenetic proteins. Identification and quantification of BMP4, BMP6 and BMP9 in bovine and human serum. BMC Cell Biology, 10, 20.

    PubMed  Google Scholar 

  150. Mirabet, V., Solves, P., Minana, M. D., et al. (2008). Human platelet lysate enhances the proliferative activity of cultured human fibroblast-like cells from different tissues. Cell and Tissue Banking, 9, 1–10.

    PubMed  Google Scholar 

  151. Muramatsu, T., Pinontoan, R., & Okumura, J. (1995). Biopotency of fetal bovine serum, and insulin and insulin-like growth factors I and II in enhancing whole-body protein synthesis of chicken embryos cultured in vitro. Comparative Biochemistry and Physiology. Part C: Pharmacology, Toxicology & Endocrinology, 111, 281–286.

    CAS  Google Scholar 

  152. Gstraunthaler, G. (2003). Alternatives to the use of fetal bovine serum: serum-free cell culture. Altex, 20, 275–281.

    PubMed  Google Scholar 

  153. Katz, A. J., & Parker, A. M. (2006). Methods and Compositions for Growing Adipose Stem Cells, WO 2007/030652 A2:69.

  154. Kim, S. J., Cho, H. H., Kim, Y. J., et al. (2005). Human adipose stromal cells expanded in human serum promote engraftment of human peripheral blood hematopoietic stem cells in NOD/SCID mice. Biochemical and Biophysical Research Communications, 329, 25–31.

    PubMed  CAS  Google Scholar 

  155. Spees, J. L., Gregory, C. A., Singh, H., et al. (2004). Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Molecular Therapy, 9, 747–756.

    PubMed  CAS  Google Scholar 

  156. Heiskanen, A., Satomaa, T., Tiitinen, S., et al. (2007). N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells, 25, 197–202.

    PubMed  CAS  Google Scholar 

  157. Martin, M. J., Muotri, A., Gage, F., et al. (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid. Natural Medicines, 11, 228–232.

    CAS  Google Scholar 

  158. Mackensen, A., Drager, R., Schlesier, M., et al. (2000). Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunology, Immunotherapy, 49, 152–156.

    PubMed  CAS  Google Scholar 

  159. Selvaggi, T. A., Walker, R. E., & Fleisher, T. A. (1997). Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood, 89, 776–779.

    PubMed  CAS  Google Scholar 

  160. Will, R. G., Ironside, J. W., Zeidler, M., et al. (1996). A new variant of Creutzfeldt-Jakob disease in the UK. Lancet, 347, 921–925.

    PubMed  CAS  Google Scholar 

  161. Stute, N., Holtz, K., Bubenheim, M., et al. (2004). Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use. Experimental Hematology, 32, 1212–1225.

    PubMed  CAS  Google Scholar 

  162. Shahdadfar, A., Fronsdal, K., Haug, T., et al. (2005). In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells, 23, 1357–1366.

    PubMed  CAS  Google Scholar 

  163. Shigeno, Y., & Ashton, B. A. (1995). Human bone-cell proliferation in vitro decreases with human donor age. The Journal of Bone and Joint Surgery British Volume, 77, 139–142.

    PubMed  CAS  Google Scholar 

  164. Koller, M. R., Maher, R. J., Manchel, I., et al. (1998). Alternatives to animal sera for human bone marrow cell expansion: human serum and serum-free media. Journal of Hematotherapy, 7, 413–423.

    PubMed  CAS  Google Scholar 

  165. Nimura, A., Muneta, T., Koga, H., et al. (2008). Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis and Rheumatism, 58, 501–510.

    PubMed  CAS  Google Scholar 

  166. Anselme, K., Broux, O., Noel, B., et al. (2002). In vitro control of human bone marrow stromal cells for bone tissue engineering. Tissue Engineering, 8, 941–953.

    PubMed  CAS  Google Scholar 

  167. Yamamoto, N., Isobe, M., Negishi, A., et al. (2003). Effects of autologous serum on osteoblastic differentiation in human bone marrow cells. Journal of Medical and Dental Sciences, 50, 63–69.

    PubMed  Google Scholar 

  168. Oreffo, R. O., & Triffitt, J. T. (1999). Future potentials for using osteogenic stem cells and biomaterials in orthopedics. Bone, 25, 5S–9S.

    PubMed  CAS  Google Scholar 

  169. Su, C. Y., Kuo, Y. P., Lin, Y. C., et al. (2009). A virally inactivated functional growth factor preparation from human platelet concentrates. Vox Sanguinis, 97, 119–128.

    PubMed  CAS  Google Scholar 

  170. Luttun, A., Ross, J. J., Verfaillie, C., et al. (2006). Differentiation of multipotent adult progenitor cells into functional endothelial and smooth muscle cells. Curr Protoc Immunol; Chapter 22:Unit 22F 29.

    Google Scholar 

  171. Caterson, E. J., Nesti, L. J., Danielson, K. G., et al. (2002). Human marrow-derived mesenchymal progenitor cells: isolation, culture expansion, and analysis of differentiation. Molecular Biotechnology, 20, 245–256.

    PubMed  CAS  Google Scholar 

  172. Parker, A. M., Shang, H., Khurgel, M., et al. (2007). Low serum and serum-free culture of multipotential human adipose stem cells. Cytotherapy, 9, 637–646.

    PubMed  CAS  Google Scholar 

  173. Frechette, J. P., Martineau, I., & Gagnon, G. (2005). Platelet-rich plasmas: growth factor content and roles in wound healing. Journal of Dental Research, 84, 434–439.

    PubMed  CAS  Google Scholar 

  174. Johansson, L., Klinth, J., Holmqvist, O., et al. (2003). Platelet lysate: a replacement for fetal bovine serum in animal cell culture? Cytotechnology, 42, 67–74.

    PubMed  CAS  Google Scholar 

  175. Salvadé, A., Mina, P. D., Gaddi, D., et al. (2010). Characterization of platelet lysate cultured mesenchymal stromal cells and their potential use in tissue-engineered osteogenic devices for the treatment of bone defects. Tissue Engineering. Part C: Methods, 16, 201–214.

    Google Scholar 

  176. Qizhou, L., Elias, L., Keng Suan, Y., et al. (2007). Derivation of clinically compliant MSCs from CD105+, CD24- differentiated human ESCs. Stem Cells, 25, 425–436.

    Google Scholar 

  177. Meuleman, N., Tondreau, T., Delforge, A., et al. (2006). Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical alpha-MEM medium. European Journal of Haematology, 76, 309–316.

    PubMed  Google Scholar 

  178. Izadpanah, R., Kaushal, D., Kriedt, C., et al. (2008). Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Research, 68, 4229–4238.

    PubMed  CAS  Google Scholar 

  179. Boquest, A. C., Shahdadfar, A., Fronsdal, K., et al. (2005). Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Molecular Biology of the Cell, 16, 1131–1141.

    PubMed  CAS  Google Scholar 

  180. Guilak, F. (2002). Functional tissue engineering: the role of biomechanics in reparative medicine. Annals of the New York Academy of Sciences, 961, 193–195.

    PubMed  Google Scholar 

  181. Sundelacruz, S., & Kaplan, D. L. (2009). Stem cell- and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. Seminars in Cell & Developmental Biology, 20, 646–655.

    CAS  Google Scholar 

  182. Le Blanc, K., Tammik, L., Sundberg, B., et al. (2003). Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scandinavian Journal of Immunology, 57, 11–20.

    PubMed  Google Scholar 

  183. Bartholomew, A., Sturgeon, C., Siatskas, M., et al. (2002). Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental Hematology, 30, 42–48.

    PubMed  Google Scholar 

  184. Tse, W. T., Pendleton, J. D., Beyer, W. M., et al. (2003). Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75, 389–397.

    PubMed  CAS  Google Scholar 

  185. Lazarus, H., Curtin, P., Devine, S., et al. (2000). Role of mesenchymal stem cells (MSC) in allogeneic transplantation: Early phase I clinical results. Blood, 96, 1691.

    Google Scholar 

  186. Jorgensen, C., Djouad, F., Apparailly, F., et al. (2003). Engineering mesenchymal stem cells for immunotherapy. Gene Therapy, 10, 928–931.

    PubMed  CAS  Google Scholar 

  187. Aust, L., Devlin, B., Foster, S. J., et al. (2004). Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 6, 7–14.

    PubMed  CAS  Google Scholar 

  188. Cui, L., Yin, S., Liu, W., et al. (2007). Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Engineering, 13, 1185–1195.

    PubMed  CAS  Google Scholar 

  189. Puissant, B., Barreau, C., Bourin, P., et al. (2005). Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. British Journal Haematology, 129, 118–129.

    Google Scholar 

  190. Niemeyer, P., Vohrer, J., Schmal, H., et al. (2008). Survival of human mesenchymal stromal cells from bone marrow and adipose tissue after xenogenic transplantation in immunocompetent mice. Cytotherapy, 10, 784–795.

    PubMed  CAS  Google Scholar 

  191. Yanez, R., Lamana, M. L., Garcia-Castro, J., et al. (2006). Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells, 24, 2582–2591.

    PubMed  CAS  Google Scholar 

  192. Kucerova, L., Altanerova, V., Matuskova, M., et al. (2007). Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Research, 67, 6304–6313.

    PubMed  CAS  Google Scholar 

  193. Yu, J. M., Jun, E. S., Bae, Y. C., et al. (2008). Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells and Development, 17, 463–473.

    PubMed  CAS  Google Scholar 

  194. Muehlberg, F. L., Song, Y. H., Krohn, A., et al. (2009). Tissue-resident stem cells promote breast cancer growth and metastasis. Carcinogenesis, 30, 589–597.

    PubMed  CAS  Google Scholar 

  195. Cousin, B., Ravet, E., Poglio, S., et al. (2009). Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo. PLoS ONE, 4, e6278.

    PubMed  Google Scholar 

  196. Grisendi, G., Bussolari, R., Cafarelli, L., et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Research, 70, 3718–3729.

  197. Garcia-Olmo, D., Garcia-Arranz, M., Garcia, L. G., et al. (2003). Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. International Journal of Colorectal Disease, 18, 451–454.

    PubMed  Google Scholar 

  198. Garcia-Olmo, D., Garcia-Arranz, M., Herreros, D., et al. (2005). A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Diseases of the Colon and Rectum, 48, 1416–1423.

    PubMed  Google Scholar 

  199. Garcia-Olmo, D., Herreros, D., Pascual, I., et al. (2009). Expanded adipose-derived stem cells for the treatment of complex perianal fistula: a phase II clinical trial. Diseases of the Colon and Rectum, 52, 79–86.

    PubMed  Google Scholar 

  200. Garcia-Olmo, D., Herreros, D., Pascual, M., et al. (2009). Treatment of enterocutaneous fistula in Crohn’s Disease with adipose-derived stem cells: a comparison of protocols with and without cell expansion. International Journal of Colorectal Disease, 24, 27–30.

    PubMed  Google Scholar 

  201. Trivedi, H. L., Vanikar, A. V., Thakker, U., et al. (2008). Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantation synthesize insulin. Transplantation Proceedings, 40, 1135–1139.

    PubMed  CAS  Google Scholar 

  202. Alvarez, P. D., Garcia-Arranz, M., Georgiev-Hristov, T., et al. (2008). A new bronchoscopic treatment of tracheomediastinal fistula using autologous adipose-derived stem cells. Thorax, 63, 374–376.

    PubMed  Google Scholar 

  203. Stillaert, F. B., Di Bartolo, C., Hunt, J. A., et al. (2008). Human clinical experience with adipose precursor cells seeded on hyaluronic acid-based spongy scaffolds. Biomaterials, 29, 3953–3959.

    PubMed  CAS  Google Scholar 

  204. Rogers, S. N., Lakshmiah, S. R., Narayan, B., et al. (2003). A comparison of the long-term morbidity following deep circumflex iliac and fibula free flaps for reconstruction following head and neck cancer. Plastic and Reconstructive Surgery, 112, 1517–1525. discussion 1526–1517.

    PubMed  Google Scholar 

  205. Conejero, J. A., Lee, J. A., Parrett, B. M., et al. (2006). Repair of palatal bone defects using osteogenically differentiated fat-derived stem cells. Plastic and Reconstructive Surgery, 117, 857–863.

    PubMed  CAS  Google Scholar 

  206. Kilroy, G. E., Foster, S. J., Wu, X., et al. (2007). Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. Journal of Cellular Physiology, 212, 702–709.

    PubMed  CAS  Google Scholar 

  207. Follmar, K. E., Decroos, F. C., Prichard, H. L., et al. (2006). Effects of glutamine, glucose, and oxygen concentration on the metabolism and proliferation of rabbit adipose-derived stem cells. Tissue Engineering, 12, 3525–3533.

    PubMed  CAS  Google Scholar 

  208. Moon, M. H., Kim, S. Y., Kim, Y. J., et al. (2006). Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cellular Physiology and Biochemistry, 17, 279–290.

    PubMed  CAS  Google Scholar 

  209. Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.

    PubMed  Google Scholar 

  210. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1822.

    PubMed  CAS  Google Scholar 

  211. Rasmusson, I., Ringden, O., Sundberg, B., et al. (2005). Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Experimental Cell Research, 305, 33–41.

    PubMed  CAS  Google Scholar 

  212. Glennie, S., Soeiro, I., Dyson, P. J., et al. (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105, 2821–2827.

    PubMed  CAS  Google Scholar 

  213. Beyth, S., Borovsky, Z., Mevorach, D., et al. (2005). Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 105, 2214–2219.

    PubMed  CAS  Google Scholar 

  214. Rasmusson, I., Ringden, O., Sundberg, B., et al. (2003). Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 76, 1208–1213.

    PubMed  Google Scholar 

  215. Grimes, B. R., Steiner, C. M., Merfeld-Clauss, S., et al. (2009). Interphase FISH demonstrates that human adipose stromal cells maintain a high level of genomic stability in long-term culture. Stem Cells and Development, 18, 717–724.

    PubMed  CAS  Google Scholar 

  216. Rubio, D., Garcia-Castro, J., Martin, M. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65, 3035–3039.

    PubMed  CAS  Google Scholar 

  217. Wellen, K. E., & Hotamisligil, G. S. (2003). Obesity-induced inflammatory changes in adipose tissue. Journal of Clinical Investigation, 112, 1785–1788.

    PubMed  CAS  Google Scholar 

  218. Lindroos, B. (2009). Characterization and optimization of in vitro culture conditions of adult stem cells for clinical cell therapy [PhD Thesis]. Tampere: Faculty of Medicine University of Tampere.

  219. Lindroos, B., Aho, K.-L., Kuokkanen, H., et al. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Engineering Part A.0.

  220. Kern, S., Eichler, H., Stoeve, J., et al. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.

    PubMed  CAS  Google Scholar 

  221. Rebelatto, C. K., Aguiar, A. M., Moretao, M. P., et al. (2008). Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Experimental Biology and Medicine, 233, 901–913.

    PubMed  CAS  Google Scholar 

  222. Zannettino, A. C., Paton, S., Arthur, A., et al. (2008). Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. Journal of Cellular Physiology, 214, 413–421.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Prof. Jeffrey Gimble, Pennington Medical Research Center for the valuable comments on the manuscript. The work was supported by TEKES, the Finnish Funding Agency for Technology and Innovation, the competitive research funding of the Pirkanmaa Hospital District, the Finnish Dental Society Apollonia, the City of Tampere, the Maud Kuistila Memorial Foundation and the Finnish Cultural Foundation Pirkanmaa Provincial Foundation.

Conflict of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Lindroos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindroos, B., Suuronen, R. & Miettinen, S. The Potential of Adipose Stem Cells in Regenerative Medicine. Stem Cell Rev and Rep 7, 269–291 (2011). https://doi.org/10.1007/s12015-010-9193-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9193-7

Keywords

Navigation