Skip to main content
Log in

Macromolecular Oxidation in Planktonic Population and Biofilms of Proteus mirabilis Exposed to Ciprofloxacin

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Diverse chemical and physical agents can alter cellular functions associated with the oxidative metabolism, thus stimulating the production of reactive oxygen species (ROS). Proteins and lipids may be important targets of oxidation, and this may alter their functions in planktonic bacterial physiology. However, more research is necessary to determine the precise role of cellular stress and macromolecular oxidation in biofilms. The present study was designed to evaluate whether ciprofloxacin (CIP) could oxidize the lipids to malondialdehyde (MDA) and the proteins to carbonyl residues and to advanced oxidation protein products (AOPP) in planktonic populations and biofilms of Proteus mirabilis. Incubation with CIP generated an increase of lipid and protein oxidation in planktonic cells, with a greater effect found in sensitive strains than resistant ones. Biofilms showed higher basal levels of oxidized macromolecules than planktonic bacteria, but there was no significant enhancement of MDA, carbonyl, or AOPP with antibiotic. The results described in this article show the high basal levels of MDA, carbonyls, and AOPP, with aging and loss of proliferation of biofilms cells. The low response to the oxidative stress generated by CIP in biofilms helps to clarify the resistance to antibiotics of P. mirabilis when adhered to surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Elahi, M. M., Kong, Y. X., & Matata, B. M. (2009). Oxidative stress as a mediator of cardiovascular disease. Oxidative Medicine and Cellular Longevity, 2, 259–269.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Aiassa, V., Barnes, A. I., & Albesa, I. (2010). Resistance to ciprofloxacin by enhancement of antioxidant defences in biofilm and planktonic Proteus mirabilis. Biochemical and Biophysical Research Communications, 26, 84–88.

    Article  Google Scholar 

  3. Páez, P. L., Becerra, M. C., & Albesa, I. (2010). Effect of the association of reduced glutathione and ciprofloxacin on the antimicrobial activity in Staphylococcus aureus. FEMS Microbiology Letters, 303, 101–105.

    Article  PubMed  Google Scholar 

  4. Fredriksson, A., Ballesteros, M., Dukan, S., & Nyström, T. (2005). Defense against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. Journal of Bacteriology, 187, 4207–4213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Halliwell, B., & Whiteman, M. (2004). Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? British Journal of Pharmacology, 142, 231–255.

    Article  CAS  PubMed  Google Scholar 

  6. Capeillère-Blandin, C., Gausson, V., Descamps-Latscha, B., & Witko-Sarsat, V. (2004). Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochimica et Biophysica Acta, 1689, 91–102.

    Article  PubMed  Google Scholar 

  7. Fink, S. P., Reddy, G. R., & Marnett, L. (1997). Mutagenicity in Escherichia coli of the major DNA adduct derived from the endogenous mutagen malondialdehyde. Proceedings of the National Academy of Sciences of the United States of America, 94, 8652–8657.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cabiscol, E., Piulats, E., Echave, P., Herrero, E., & Ros, J. (2000). Oxidative stress promotes specific protein damage in S. cerevisiae. Journal of Biological Chemistry, 275, 27393–27398.

    CAS  PubMed  Google Scholar 

  9. Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet, 358, 135–138.

    Article  CAS  PubMed  Google Scholar 

  10. Jacobsen, S. M., & Shirtliff, M. E. (2011). Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence, 2, 460–465.

    Article  PubMed  Google Scholar 

  11. Kadurugamuwa, J. L., Modi, K., Yu, J., Francis, K. P., Purchio, T., & Contag, P. R. (2005). Noninvasive biophotonic imaging for monitoring of catheter associated urinary tract infections and therapy in mice. Infection and Immunity, 73, 3878–3887.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Clinical and Laboratory Standards Institute (CLSI) (formerly NCCLS). (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard (7th ed.). CSLI Document M7-A7. Wayne: Clinical and Laboratory Standards Institute.

  13. O’Toole, G. A., & Kolter, R. (1998). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: A genetic analysis. Molecular Microbiology, 28, 449–461.

    Article  PubMed  Google Scholar 

  14. Deighton, M. A., Capstick, J., Domalewski, E., & Van Nguyen, T. (2001). Methods for studying biofilms produced by Staphylococcus epidermidis. Methods in Enzymology, 336, 177–195.

    CAS  PubMed  Google Scholar 

  15. Resch, A., Rosenstein, R., Nerz, C., & Götz, F. (2005). Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Applied and Environment Microbiology, 71, 2663–2676.

    Article  CAS  Google Scholar 

  16. Becerra, M. C., Páez, P. L., Laróvere, L. E., & Albesa, I. (2006). Lipids and DNA oxidation in Staphylococcus aureus as a consequence of oxidative stress generated by ciprofloxacin. Molecular and Cellular Biochemistry, 285, 29–34.

    Article  CAS  PubMed  Google Scholar 

  17. Witko-Sarsat, V., Friedlander, M., Nguyen Khoa, T., Capeillère-Blandin, C., Nguyen, A. T., Canteloup, S., et al. (1998). Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. Journal of Immunology, 161, 2524–2532.

    CAS  Google Scholar 

  18. Stauffer, C. E. (1975). A linear standard curve for the Folin–Lowry determination of protein. Analytical Biochemistry, 69, 646–648.

    Article  CAS  PubMed  Google Scholar 

  19. Wagai, N., & Tawara, K. (1992). Possible reasons for difference in phototoxic potential of 5-quinolone antibacterial agents: Generation of toxic oxygen. Free Radical Research Communications, 17, 387–398.

    Article  CAS  PubMed  Google Scholar 

  20. Páez, P. L., Becerra, M. C., & Albesa, I. (2011). Comparison of macromolecular oxidation by reactive oxygen species in three bacterial genera exposed to different antibiotics. Cell Biochemistry and Biophysics, 61, 467–472.

    Article  PubMed  Google Scholar 

  21. Cooper, S. (1988). Rate and topography of cell wall synthesis during the division cycle of Salmonella typhimurium. Journal of Bacteriology, 170, 422–430.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Nyström, T. (1998). To be or not to be: The ultimate decision of the growth-arrested bacterial cell. FEMS Microbiology Reviews, 21, 283–290.

    Article  Google Scholar 

  23. Marquis, R. E., Sim, J., & Shin, S. I. (1994). Molecular mechanisms of resistance to heat and oxidative damage. Journal of Applied Bacteriology, 76, 40S–48S.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support granted by Secretaría de Ciencia y Tecnología from the Universidad Nacional de Córdoba (SECyT-UNC) and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET). Virginia Aiassa is a career research member of CONICET. We thank Dr. Paul Hobson, a native English speaker, for revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Aiassa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aiassa, V., Barnes, A.I. & Albesa, I. Macromolecular Oxidation in Planktonic Population and Biofilms of Proteus mirabilis Exposed to Ciprofloxacin. Cell Biochem Biophys 68, 49–54 (2014). https://doi.org/10.1007/s12013-013-9693-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9693-6

Keywords

Navigation