Skip to main content

Advertisement

Log in

Modulation of Chitotriosidase During Macrophage Differentiation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Macrophages as a principal component of immune system play an important role in the initiation, modulation, and final activation of the immune response against pathogens. Upon stimulation with different cytokines, macrophages can undergo classical or alternative activation to become M1 or M2 macrophages, which have different functions during infections. Although chitotriosidase is widely accepted as a marker of activated macrophages and is thought to participate in innate immunity, particularly in defense mechanisms against chitin containing pathogens, little is known about its expression during macrophages full maturation and polarization. In this study we analyzed CHIT-1 modulation during monocyte-to-macrophage maturation and during their polarization. The levels of CHIT-1 expression was investigated in human monocytes obtained from buffy coat of healthy volunteers, polarized to classically activated macrophages (or M1), whose prototypical activating stimuli are interferon-γ and lipopolysaccharide, and alternatively activated macrophages (or M2) obtained by interleukin-4 exposure by real-time PCR and by Western blot analysis. During monocyte–macrophage differentiation both protein synthesis and mRNA analysis showed that CHIT-1 rises significantly and is modulated in M1 and M2 macrophages.Our results demonstrated that variations of CHIT-1 production are strikingly associated with macrophages polarization, indicating a different rule of this enzyme in the specialized macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ross, R., Ross, X. L., Ghadially, H., Lahr, T., Schwing, J., Knop, J., et al. (1999). Mouse langerhans cells differentially express an activated T cell attracting CC chemokine. Journal of Investigative Dermatology, 113, 991–998.

    Article  PubMed  CAS  Google Scholar 

  2. Martinez, F. O., Sica, A., Mantovani, A., & Locati, M. (2008). Macrophage activation and polarization. Frontiers in Bioscience, 13, 453–461.

    Article  PubMed  CAS  Google Scholar 

  3. van Eijk, M., van Roomen, C. P., Renkema, G. H., Bussink, A. P., Andrews, L., Blommaart, E. F., et al. (2005). Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. International Immunology, 17, 1505–1512.

    Article  PubMed  Google Scholar 

  4. Malaguarnera, L. (2006). Chitotriosidase: The yin and yang. Cellular and Molecular Life Sciences, 63, 3018–3029.

    Article  PubMed  CAS  Google Scholar 

  5. van Eijk, M., Voorn-Brouwer, T., Scheij, S. S., Verhoeven, A. J., Boot, R. G., & Aerts, J. M. (2010). Curdlan-mediated regulation of human phagocyte-specific chitotriosidase. FEBS Letters, 584, 3165–3169.

    Article  PubMed  Google Scholar 

  6. Bussink, A. P., van Eijk, M., Renkema, G. H., Aerts, J. M., & Boot, R. G. (2006). The biology of the Gaucher cell: The cradle of human chitinases. International Review of Cytology, 252, 71–128.

    Article  PubMed  CAS  Google Scholar 

  7. Boven, L. A., van Meurs, M., Boot, R. G., Mehta, A., Boon, L., Aerts, J. M., et al. (2004). Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. American Journal of Clinical Pathology, 122, 359–369.

    Article  PubMed  CAS  Google Scholar 

  8. Barone, R., Bertrand, G., Simporè, J., Malaguarnera, M., & Musumeci, S. (2001). Plasma chitotriosidase activity in beta-thalassemia major: A comparative study between Sicilian and Sardinian patients. Clinica Chimica Acta, 306, 91–96.

    Article  CAS  Google Scholar 

  9. Bargagli, E., Maggiorelli, C., & Rottoli, P. (2008). Human chitotriosidase: A potential new marker of sarcoidosis severity. Respiration, 76, 234–238.

    Article  PubMed  CAS  Google Scholar 

  10. Comabella, M., Domínguez, C., Rio, J., Martín-Gallán, P., Vilches, A., Vilarrasa, N., et al. (2009). Plasma chitotriosidase activity in multiple sclerosis. Clinical Immunology, 131, 216–222.

    Article  PubMed  CAS  Google Scholar 

  11. Malaguarnera, L., Simporè, J., Prodi, D. A., Angius, A., Sassu, A., Persico, I., et al. (2003). 24-bp duplication in exon 10 of human chitotriosidase gene from the sub-Saharan to the Mediterranean area: role of parasitic diseases and environmental conditions. Genes and Immunity, 4, 570–574.

    Article  PubMed  CAS  Google Scholar 

  12. Artieda, M., Cenarro, A., Gañán, A., Lukic, A., Moreno, E., Puzo, J., et al. (2007). Serum chitotriosidase activity, a marker of activated macrophages, predicts new cardiovascular events independently of C-reactive protein. Cardiology, 108, 297–306.

    Article  PubMed  CAS  Google Scholar 

  13. Palasik, W., Fiszer, U., Lechowicz, W., Czartoryska, B., Krzesiewicz, M., & Lugowska, A. (2005). Assessment of relations between clinical outcome of ischemic stroke and activity of inflammatory processes in the acute phase based on examination of selected parameters. European Neurology, 53, 188–193.

    Article  PubMed  CAS  Google Scholar 

  14. Di Rosa, M., Dell’Ombra, N., Zambito, A. M., Malaguarnera, M., Nicoletti, F., & Malaguarnera, L. (2006). Chitotriosidase and inflammatory mediator levels in Alzheimer’s disease and cerebrovascular dementia. European Journal of Neuroscience, 23, 2648–2656.

    Article  PubMed  Google Scholar 

  15. Malaguarnera, L., Di Rosa, M., Zambito, A. M., dell’Ombra, N., Di Marco, R., & Malaguarnera, M. (2006). Potential role of chitotriosidase gene in nonalcoholic fatty liver disease evolution. American Journal of Gastroenterology, 101, 2060–2069.

    Article  PubMed  CAS  Google Scholar 

  16. Malaguarnera, L., Di Rosa, M., Zambito, A. M., dell’Ombra, N., Nicoletti, F., & Malaguarnera, M. (2006). Chitotriosidase gene expression in Kupffer cells from patients with non-alcoholic fatty liver disease. Gut, 55, 1313–1320.

    Article  PubMed  CAS  Google Scholar 

  17. Kzhyshkowska, J., Gratchev, A., & Goerdt, S. (2007). Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomarker Insights, 2, 128–146.

    PubMed  Google Scholar 

  18. Boot, R. G., Renkema, G. H., Verhoek, M., Strijland, A., Bliek, J., de Meulemeester, T. M., et al. (1998). The human chitotriosidase gene. Nature of inherited enzyme deficiency. Journal of Biological Chemistry, 273, 25680–25685.

    Article  PubMed  CAS  Google Scholar 

  19. Malaguarnera, L., Ohazuruike, L. N., Tsianaka, C., Antic, T., Di Rosa, M., & Malaguarnera, M. (2010). Human chitotriosidase polymorphism is associated with human longevity in Mediterranean nonagenarians and centenarians. Journal of Human Genetics, 55, 8–12.

    Article  PubMed  CAS  Google Scholar 

  20. Lehrnbecher, T., Bernig, T., Hanisch, M., Koehl, U., Behl, M., Reinhardt, D., et al. (2005). Common genetic variants in the interleukin-6 and chitotriosidase genes are associated with the risk for serious infection in children undergoing therapy for acute myeloid leukemia. Leukemia, 19, 1745–1750.

    Article  PubMed  CAS  Google Scholar 

  21. Malaguarnera, L., Musumeci, M., Di Rosa, M., Scuto, A., & Musumeci, S. (2005). Interferon-gamma, tumor necrosis factor-alpha, and lipopolysaccharide promote chitotriosidase gene expression in human macrophages. Journal of Clinical Laboratory Analysis, 19, 128–132.

    Article  PubMed  CAS  Google Scholar 

  22. Di Rosa, M., Zambito, A. M., Marsullo, A. R., Li Volti, G., & Malaguarnera, L. (2009). Prolactin induces chitotriosidase expression in human macrophages through PTK, PI3-K, and MAPK pathways. Journal of Cellular Biochemistry, 2009(107), 881–889.

    Article  Google Scholar 

  23. Fagone, P., Di Rosa, M., Palumbo, M., De Gregorio, C., Nicoletti, F., Malaguarnera, L. (2012, Jun 16). Modulation of heat shock proteins during macrophage differentiation. Inflammation Research.

  24. Martinez, F. O., Gordon, S., Locati, M., & Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology, 177, 7303–7311.

    CAS  Google Scholar 

  25. Cakır, G., Gumus, S., Ucar, E., Kaya, H., Tozkoparan, E., Akgul, E. O., et al. (2012). Serum chitotriosidase activity in pulmonary tuberculosis: Response to treatment and correlations with clinical parameters. Annals of Laboratory Medicine, 32, 184–189.

    Article  PubMed  Google Scholar 

  26. Bargagli, E., Margollicci, M., Nikiforakis, N., Luddi, A., Perrone, A., Grosso, S., et al. (2007). Chitotriosidase activity in the serum of patients with sarcoidosis and pulmonary tuberculosis. Respiration, 74, 548–552.

    Article  PubMed  CAS  Google Scholar 

  27. Iyer, A., van Eijk, M., Silva, E., Hatta, M., Faber, W., Aerts, J. M., et al. (2009). Increased chitotriosidase activity in serum of leprosy patients: Association with bacillary leprosy. Clinical Immunology, 131, 501–509.

    Article  PubMed  CAS  Google Scholar 

  28. Di Rosa, M., Mangano, K., De Gregorio, C., Nicoletti, F., & Malaguarnera, L. (2012). Association of chitotriosidase genotype with the development of nonalcoholic fatty liver disease. Hepatitis Research. doi:10.1111/j.1872-034X.2012.01063.x.

  29. Martinez, F. O., Helming, L., & Gordon, S. (2009). Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology, 27, 451–483.

    Article  PubMed  CAS  Google Scholar 

  30. Wynn, T. A., & Barron, L. (2010). Macrophages: master regulators of inflammation and fibrosis. Seminars in Liver Disease, 30, 245–257.

    Article  PubMed  CAS  Google Scholar 

  31. Stein, M., Keshav, S., Harris, N., & Gordon, S. (1992). Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. Journal of Experimental Medicine, 176, 287–292.

    Article  PubMed  CAS  Google Scholar 

  32. Berry, A., Balard, P., Coste, A., Olagnier, D., Lagane, C., Authier, H., et al. (2007). IL-13 induces expression of CD36 in human monocytes through PPAR gamma activation. European Journal of Immunology, 37, 1642–1652.

    Article  PubMed  CAS  Google Scholar 

  33. Kang, K., Reilly, S. M., Karabacak, V., Gangl, M. R., Fitzgerald, K., Hatano, B., et al. (2008). Adipocyte-derived Th2 cytokines and myeloid PPAR delta regulate macrophage polarization and insulin sensitivity. Cell Metabolism, 2008(7), 485–495.

    Article  Google Scholar 

  34. Pourcet, B., Feig, J. E., Vengrenyuk, Y., Hobbs, A., Kepka-Lenhart, D., Garabedian, M., et al. (2011). LXR{alpha} regulates macrophage arginase 1 through PU.1 and interferon regulatory factor 8. Circulation Research, 109, 492–501.

    Article  PubMed  CAS  Google Scholar 

  35. Lee, C. G. (2009). Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling. Yonsei Medical Journal, 50, 22–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Malaguarnera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Rosa, M., Malaguarnera, G., De Gregorio, C. et al. Modulation of Chitotriosidase During Macrophage Differentiation. Cell Biochem Biophys 66, 239–247 (2013). https://doi.org/10.1007/s12013-012-9471-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9471-x

Keywords

Navigation