Skip to main content
Log in

Differential Effects of G- and F-Actin on the Plasma Membrane Calcium Pump Activity

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We have previously shown that plasma membrane calcium ATPase (PMCA) pump activity is affected by the membrane protein concentration (Vanagas et al., Biochim Biophys Acta 1768:1641–1644, 2007). The results of this study provided evidence for the involvement of the actin cytoskeleton. In this study, we explored the relationship between the polymerization state of actin and its effects on purified PMCA activity. Our results show that PMCA associates with the actin cytoskeleton and this interaction causes a modulation of the catalytic activity involving the phosphorylated intermediate of the pump. The state of actin polymerization determines whether it acts as an activator or an inhibitor of the pump: G-actin and/or short oligomers activate the pump, while F-actin inhibits it. The effects of actin on PMCA are the consequence of direct interaction as demonstrated by immunoblotting and cosedimentation experiments. Taken together, these findings suggest that interactions with actin play a dynamic role in the regulation of PMCA-mediated Ca2+ extrusion through the membrane. Our results provide further evidence of the activation–inhibition phenomenon as a property of many cytoskeleton-associated membrane proteins where the cytoskeleton is no longer restricted to a mechanical function but is dynamically involved in modulating the activity of integral proteins with which it interacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DMSO:

Dimethyl sulfoxide

EGTA:

Ethylene glycol tetraacetic acid

IOVs:

Inside-out vesicles

MESG:

2-Amino-6-mercapto-7-methylpurine riboside

PMCA:

Plasma membrane calcium ATPase

Tris:

Tris(hydroxymethyl) aminomethane

C12E10 :

Polyoxyethylene glycol monoether with C12 alkyl chain and 10 polyoxyethylene units in the headgroup

References

  1. Vanagas, L., Rossi, R. C., Caride, A. J., Filoteo, A. G., Strehler, E. E., & Rossi, J. P. (2007). Plasma membrane calcium pump activity is affected by the membrane protein concentration: Evidence for the involvement of the actin cytoskeleton. Biochimica et Biophysica Acta, 1768, 1641–1644.

    Article  PubMed  CAS  Google Scholar 

  2. Khurana, S. (2000). Role of actin cytoskeleton in regulation of ion transport: Examples from epithelial cells. Journal of Membrane Biology, 178, 73–87. (Review).

    Article  PubMed  CAS  Google Scholar 

  3. Cooke, R. (1975). The role of the bound nucleotide in the polymerization of actin. Biochemistry, 14, 3250–3256.

    Article  PubMed  CAS  Google Scholar 

  4. Bertorello, A. M., Ridge, K. M., Chibalin, A. V., Katz, A. I., & Sznajder, J. I. (1999). Isoproterenol increases Na+–K+-ATPase activity by membrane insertion of alpha-subunits in lung alveolar cells. American Journal of Physiology, 276, L20–L27.

    PubMed  CAS  Google Scholar 

  5. Cantiello, H. F. (1995). Actin filaments stimulate the Na(+)–K(+)-ATPase. American Journal of Physiology, 1995(269), F637–F643.

    Google Scholar 

  6. González Flecha, F. L., Castello, P. R., Caride, A. J., Gagliardino, J. J., & Rossi, J. P. (1993). The erythrocyte calcium pump is inhibited by non-enzymic glycation: Studies in situ and with the purified enzyme. Biochemical Journal, 1993(293), 369–375.

    Google Scholar 

  7. Steck, T. L., Weinstein, R. S., Straus, J. H., & Wallach, D. F. (1970). Inside-out red cell membrane vesicles: Preparation and purification. Science, 168, 255–257.

    Article  PubMed  CAS  Google Scholar 

  8. Ellman, G. L., Courtney, K. D., Andres, V, Jr, & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95.

    Article  PubMed  CAS  Google Scholar 

  9. Filomatori, C. V., & Rega, A. F. (2003). On the mechanism of activation of the plasma membrane Ca2+-ATPase by ATP and acidic phospholipids. Journal of Biological Chemistry, 278, 22265–22271.

    Article  PubMed  CAS  Google Scholar 

  10. Pardee, J. D., & Spudich, J. A. (1982). Purification of muscle actin. Methods in Enzymology, 85(Pt B), 164–181.

    Article  PubMed  CAS  Google Scholar 

  11. Xu, S., Malinchik, S., Frisbie, S., Gu, J., Kraft, T., Rapp, G., et al. (1998). X-ray diffraction studies of the cross-bridge intermediate states. Advances in Experimental Medicine and Biology, 453, 271–278. discussion 278–279.

    Article  PubMed  CAS  Google Scholar 

  12. Cooper, J. A., Walker, S. B., & Pollard, T. D. (1983). Pyrene actin: Documentation of the validity of a sensitive assay for actin polymerization. Journal of Muscle Research and Cell Motility, 4, 253–262.

    Article  PubMed  CAS  Google Scholar 

  13. Webb, M. R. (1992). A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 89, 4884–4887.

    Article  PubMed  CAS  Google Scholar 

  14. Fiske, C. H., & Subbarrow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66, 375–400.

    CAS  Google Scholar 

  15. Schaegger, H., & Von Jagow, (1987). Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379.

    Article  CAS  Google Scholar 

  16. Lündahl, P. (1975). Proteins selectively released from water-extracted human erythrocyte membranes upon citranylation or maleylation. Biochimica et Biophysica Acta, 379, 304–316.

    Article  PubMed  Google Scholar 

  17. Peterson, G. L. (1983). Determination of total protein. Methods in Enzymology, 91, 95–121.

    Article  PubMed  CAS  Google Scholar 

  18. Ball, E. H. (1986). Quantitation of proteins by elution of coomassie brilliant blue R from stained bands after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analytical Biochemistry, 1986(155), 26–27.

    Google Scholar 

  19. Echarte, M. M., Levi, V., Villamil, A. M., Rossi, R. C., & Rossi, J. P. (2001). Quantitation of plasma membrane calcium pump phosphorylated intermediates by electrophoresis. Analytical Biochemistry, 289, 267–273.

    Article  PubMed  CAS  Google Scholar 

  20. Srivastava, J., & Barber, D. (2008). Actin co-sedimentation assay for the analysis of protein binding to F-actin. Journal of Visualized Experiments, 28, 690.

    Google Scholar 

  21. Weber, T., & Brunner, J. (1995). Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. Journal of the American Chemical Society, 117, 3084–3095.

    Article  CAS  Google Scholar 

  22. Mangialavori, I., Giraldo, A. M., Buslje, C. M., Gomes, M. F., Caride, A. J., & Rossi, J. P. (2009). A new conformation in sarcoplasmic reticulum calcium pump and plasma membrane Ca2+ pumps revealed by a photoactivatable phospholipidic probe. Journal of Biological Chemistry, 284, 4823–4828.

    Article  PubMed  CAS  Google Scholar 

  23. Mangialavori, I., Ferreira-Gomes, M. F., Pignataro, M. F., Strehler, E. E., & Rossi, J. P. (2010). Determination of the dissociation constants for Ca2+ and calmodulin from the plasma membrane Ca2+ pump by a lipid probe that senses membrane domain changes. Journal of Biological Chemistry, 285, 123–130.

    Article  PubMed  CAS  Google Scholar 

  24. Dzandu, J. K., Deh, M. E., Barratt, D. L., & Wise, G. E. (1981). Detection of erythrocyte membrane proteins, sialoglycoproteins, and lipids in the same polyacrylamide gel using a double-staining technique. Proceedings of the National Academy of Sciences of the United States of America, 81, 1733–1737.

    Article  Google Scholar 

  25. Purich, D. L., & Southwick, F. S. (1999). Energetics of nucleotide hydrolysis in polymer assembly/disassembly: The cases of actin and tubulin. Methods in Enzymology, 308, 93–111.

    Article  PubMed  CAS  Google Scholar 

  26. Karr, T. L., & Kristofferson, D. (1980). Mechanism of microtubule depolymerization. Correlation of rapid induced disassembly experiments with a kinetic model for endwise depolymerization. Journal of Biological Chemistry, 255, 8560–8566.

    PubMed  CAS  Google Scholar 

  27. Scott, K. Z., & Stossel, T. P. (1983). Physical basis of the rheologic properties of F-actin. Journal of Biological Chemistry, 25, 11004–11009.

    Google Scholar 

  28. Esmann, M., Fedosova, N. U., & Marsh, D. (2008). Osmotic stress and viscous retardation of the Na,K-ATPase ion pump. Biophysical Journal, 95, 2767–2776.

    Article  Google Scholar 

  29. Käs, J., Strey, H., Tang, J. X., Finger, D., Ezzell, R., Sackmann, E., et al. (1996). F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophysical Journal, 70, 609–625.

    Article  PubMed  Google Scholar 

  30. Auth, T., & Gov, N. S. (2009). Diffusion in a fluid membrane with a flexible cortical cytoskeleton. Biophysical Journal, 96, 818–830.

    Article  PubMed  CAS  Google Scholar 

  31. Sheetz, M. P. (1983). Membrane skeletal dynamics: Role in modulation of red cell deformability, mobility of transmembrane proteins, and shape. Seminars in Hematology, 20, 175–188.

    PubMed  CAS  Google Scholar 

  32. Molitoris, B. A., Dahl, R., & Geerdes, A. (1992). Cytoskeleton disruption and apical redistribution of proximal tubule Na(+)–K(+)-ATPase during ischemia. American Journal of Physiology, 263, 488–495.

    Google Scholar 

  33. Padanyi, R., Paszty, K., Strehler, E. E., & Enyedi, A. (2009). PSD-95 mediates membrane clustering of the human plasma membrane Ca2+ pump isoform 4b. Biochimica et Biophysica Acta, 1793, 1023–1032.

    Article  PubMed  CAS  Google Scholar 

  34. Padanyi, R., Xiong, Y., Antalffy, G., Lor, K., Paszty, K., Strehler, E. E., et al. (2010). Apical scaffolding protein NHERF2 modulates the localization of alternatively spliced plasma membrane Ca2+_ Pump 2B variants in polarized epithelial cells. Journal of Biological Chemistry, 285, 1704–31712.

    Article  Google Scholar 

  35. Akiyama, T., Kadowaki, T., Nishida, E., Kadooka, T., Ogawara, H., Fukami, Y., et al. (1986). Substrate specificities of tyrosine-specific protein kinases toward cytoskeletal proteins in vitro. Journal of Biological Chemistry, 261, 14797–14803.

    PubMed  CAS  Google Scholar 

  36. Agnew, B. J., Duman, J. G., Watson, C. L., Coling, D. E., & Forte, J. G. (1999). Cytological transformations associated with parietal cell stimulation: Critical steps in the activation cascade. Journal of Cell Science, 112, 2639–2646.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present work was supported by the NIH, Fogarty International Center Grant R03TW006837 to JPFCR and by ANPCYT, CONICET and UBACYT from Argentina. MCDLF, LV, MD, and MFG are doctoral fellows of CONICET. ICM, RCR and JPFCR are established investigators of CONICET, Argentina. EES is an established researcher of Mayo/Clinic Foundation, Rochester, MN, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene C. Mangialavori.

Additional information

Laura Vanagas and María Candelaria de La Fuente are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanagas, L., de La Fuente, M.C., Dalghi, M. et al. Differential Effects of G- and F-Actin on the Plasma Membrane Calcium Pump Activity. Cell Biochem Biophys 66, 187–198 (2013). https://doi.org/10.1007/s12013-012-9467-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9467-6

Keywords

Navigation