Skip to main content
Log in

Overview of Calpain-Mediated Regulation of Bone and Fat Mass in Osteoblasts

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The receptor for parathyroid hormone (PTH) and PTH-related peptide (PTH1R) belongs to the class II G protein-coupled receptor superfamily. The calpain small subunit encoded by the gene Capns1 is the second protein and the first enzyme identified by a yeast two-hybrid screen using the intracellular C-terminal tail of the rat PTH1R. The calpain regulatory small subunit forms a heterodimer with the calpain large catalytic subunit and modulates various cellular functions as a cysteine protease. To investigate a physiological role of the calpain small subunit in cells of the osteoblast lineage, we generated osteoblast-specific Capns1 knockout mouse models and characterized their bone phenotype. Molecular mechanisms by which calpain modulates cell proliferation of the osteoblast lineage were further examined in vitro. Moreover, we utilized the mutant mice as a disease model of osteoporosis accompanied with impaired bone resorptive function and suggested a possible clinical translation of our basic research finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ducy, P., Amling, M., Takeda, S., Priemel, M., Schilling, A. F., Beil, F. T., et al. (2000). Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell, 100, 197–207.

    Article  PubMed  CAS  Google Scholar 

  2. Takeda, S., Elefteriou, F., Levasseur, R., Liu, X., Zhao, L., Parker, K. L., et al. (2002). Leptin regulates bone formation via the sympathetic nervous system. Cell, 111, 305–317.

    Article  PubMed  CAS  Google Scholar 

  3. Elefteriou, F., Ahn, J. D., Takeda, S., Starbuck, M., Yang, X., Liu, X., et al. (2005). Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature, 434, 514–520.

    Article  PubMed  CAS  Google Scholar 

  4. Yadav, V. K., Oury, F., Suda, N., Liu, Z. W., Gao, X. B., Confavreux, C., et al. (2009). A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell, 138, 976–989.

    Article  PubMed  CAS  Google Scholar 

  5. Lee, N. K., Sowa, H., Hinoi, E., Ferron, M., Ahn, J. D., Confavreux, C., et al. (2007). Endocrine regulation of energy metabolism by the skeleton. Cell, 130, 456–469.

    Article  PubMed  CAS  Google Scholar 

  6. Hinoi, E., Gao, N., Jung, D. Y., Yadav, V., Yoshizawa, T., Kajimura, D., et al. (2009). An Osteoblast-dependent mechanism contributes to the leptin regulation of insulin secretion. Annals of the New York Academy of Sciences, 1173(Suppl 1), E20–E30.

    Article  PubMed  CAS  Google Scholar 

  7. Ferron, M., Wei, J., Yoshizawa, T., Del Fattore, A., DePinho, R. A., Teti, A., et al. (2010). Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell, 142, 296–308.

    Article  PubMed  CAS  Google Scholar 

  8. Mahon, M. J., Donowitz, M., Yun, C. C., & Segre, G. V. (2002). Na(+)/H(+) exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature, 417, 858–861.

    Article  PubMed  CAS  Google Scholar 

  9. Juppner, H., Abou-Samra, A. B., Freeman, M., Kong, X. F., Schipani, E., Richards, J., et al. (1991). A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science, 254, 1024–1026.

    Article  PubMed  CAS  Google Scholar 

  10. Shimada, M., Mahon, M. J., Greer, P. A., & Segre, G. V. (2005). The receptor for parathyroid hormone and parathyroid hormone-related peptide is hydrolyzed and its signaling properties are altered by directly binding the calpain small subunit. Endocrinology, 146, 2336–2344.

    Article  PubMed  CAS  Google Scholar 

  11. Goll, D. E., Thompson, V. F., Li, H., Wei, W., & Cong, J. (2003). The calpain system. Physiological Reviews, 83, 731–801.

    PubMed  CAS  Google Scholar 

  12. Sorimachi, H., Hata, S., & Ono, Y. (2011). Calpain chronicle—an enzyme family under multidisciplinary characterization. Proceedings of the Japan Academy-Series B: Physical & Biological Sciences, 87, 287–327.

    Article  CAS  Google Scholar 

  13. Arthur, J. S., Elce, J. S., Hegadorn, C., Williams, K., & Greer, P. A. (2000). Disruption of the murine calpain small subunit gene, Capn4: Calpain is essential for embryonic development but not for cell growth and division. Molecular and Cellular Biology, 20, 4474–4481.

    Article  PubMed  CAS  Google Scholar 

  14. Zimmerman, U. J., Boring, L., Pak, J. H., Mukerjee, N., & Wang, K. K. (2000). The calpain small subunit gene is essential: Its inactivation results in embryonic lethality. IUBMB Life, 50, 63–68.

    Article  PubMed  CAS  Google Scholar 

  15. Tram, K. K., Spencer, M. J., Murray, S. S., Lee, D. B., Tidball, J. G., & Murray, E. J. (1993). Identification of calcium-activated neutral protease activity and regulation by parathyroid hormone in mouse osteoblastic cells. Biochemistry and Molecular Biology International, 29, 981–987.

    PubMed  CAS  Google Scholar 

  16. Murray, E. J., Tram, K. K., Murray, S. S., & Lee, D. B. (1995). Parathyroid hormone-induced retraction of MC3T3-E1 osteoblastic cells is attenuated by the calpain inhibitor N-Ac-Leu–Leu-norleucinal. Metabolism, 44, 141–144.

    Article  PubMed  CAS  Google Scholar 

  17. Murray, E. J., Grisanti, M. S., Bentley, G. V., & Murray, S. S. (1997). E64d, a membrane-permeable cysteine protease inhibitor, attenuates the effects of parathyroid hormone on osteoblasts in vitro. Metabolism, 46, 1090–1094.

    Article  PubMed  CAS  Google Scholar 

  18. Murray, S. S., Grisanti, M. S., Bentley, G. V., Kahn, A. J., Urist, M. R., & Murray, E. J. (1997). The calpain-calpastatin system and cellular proliferation and differentiation in rodent osteoblastic cells. Experimental Cell Research, 233, 297–309.

    Article  PubMed  CAS  Google Scholar 

  19. Shimada, M., Greer, P. A., McMahon, A. P., Bouxsein, M. L., & Schipani, E. (2008). In vivo targeted deletion of calpain small subunit, Capn4, in cells of the osteoblast lineage impairs cell proliferation, differentiation, and bone formation. Journal of Biological Chemistry, 283, 21002–21010.

    Article  PubMed  CAS  Google Scholar 

  20. Nakashima, K., Zhou, X., Kunkel, G., Zhang, Z., Deng, J. M., Behringer, R. R., et al. (2002). The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell, 108, 17–29.

    Article  PubMed  CAS  Google Scholar 

  21. Dacquin, R., Starbuck, M., Schinke, T., & Karsenty, G. (2002). Mouse alpha1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Developmental Dynamics, 224, 245–251.

    Article  PubMed  CAS  Google Scholar 

  22. Rodda, S. J., & McMahon, A. P. (2006). Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development, 133, 3231–3244.

    Article  PubMed  CAS  Google Scholar 

  23. Kashiwagi, A., Fein, M. J., & Shimada, M. (2011). Calpain modulates cyclin-dependent kinase inhibitor 1B (p27(Kip1)) in cells of the osteoblast lineage. Calcified Tissue International, 89, 36–42.

    Article  PubMed  CAS  Google Scholar 

  24. Bertoli, C., Copetti, T., Lam, E. W., Demarchi, F., & Schneider, C. (2009). Calpain small-1 modulates Akt/FoxO3A signaling and apoptosis through PP2A. Oncogene, 28, 721–733.

    Article  PubMed  CAS  Google Scholar 

  25. Gutzkow, K. B., Naderi, S., & Blomhoff, H. K. (2002). Forskolin-mediated G1 arrest in acute lymphoblastic leukaemia cells: Phosphorylated pRB sequesters E2Fs. Journal of Cell Science, 115, 1073–1082.

    PubMed  CAS  Google Scholar 

  26. Parada, Y., Banerji, L., Glassford, J., Lea, N. C., Collado, M., Rivas, C., et al. (2001). BCR-ABL and interleukin 3 promote haematopoietic cell proliferation and survival through modulation of cyclin D2 and p27Kip1 expression. Journal of Biological Chemistry, 276, 23572–23580.

    Article  PubMed  CAS  Google Scholar 

  27. Ishida, N., Hara, T., Kamura, T., Yoshida, M., Nakayama, K., & Nakayama, K. I. (2002). Phosphorylation of p27Kip1 on Serine 10 is required for its binding to CRM1 and Nuclear Exports. Journal of Biological Chemistry, 277, 14355–14358.

    Article  PubMed  CAS  Google Scholar 

  28. Rodier, G., Montagnoli, A., Di Marcotullio, L., Coulombe, P., Draetta, G. F., Pagano, M., et al. (2001). p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO Journal, 20, 6672–6682.

    Article  PubMed  CAS  Google Scholar 

  29. Delmas, C., Aragou, N., Poussard, S., Cottin, P., Darbon, J. M., & Manenti, S. (2003). MAP kinase-dependent degradation of p27Kip1 by calpains in choroidal melanoma cells. Requirement of p27Kip1 nuclear export. Journal of Biological Chemistry, 278, 12443–12451.

    Article  PubMed  CAS  Google Scholar 

  30. Kashiwagi, A., Schipani, E., Fein, M. J., Greer, P. A., & Shimada, M. (2010). Targeted deletion of Capn4 in cells of the chondrocyte lineage impairs chondrocyte proliferation and differentiation. Molecular and Cellular Biology, 30, 2799–2810.

    Article  PubMed  CAS  Google Scholar 

  31. Kashiwagi, A., Fein, M. J., & Shimada, M. (2011). A high fat diet-induced impaired glucose metabolism in mice with targeted deletion of calpain in osteoblasts. Biochemical and Biophysical Research Communications, 409, 235–240.

    Article  PubMed  CAS  Google Scholar 

  32. Onishi, T., & Hruska, K. (1997). Expression of p27Kip1 in osteoblast-like cells during differentiation with parathyroid hormone. Endocrinology, 138, 1995–2004.

    Article  PubMed  CAS  Google Scholar 

  33. Qin, L., Li, X., Ko, J. K., & Partridge, N. C. (2005). Parathyroid hormone uses multiple mechanisms to arrest the cell cycle progression of osteoblastic cells from G1 to S phase. Journal of Biological Chemistry, 280, 3104–3111.

    Article  PubMed  CAS  Google Scholar 

  34. Klopfleisch, R., & Gruber, A. D. (2009). Differential expression of cell cycle regulators p21, p27 and p53 in metastasizing canine mammary adenocarcinomas versus normal mammary glands. Research in Veterinary Science, 87, 91–96.

    Article  PubMed  CAS  Google Scholar 

  35. Klopfleisch, R., Schutze, M., & Gruber, A. D. (2010). Loss of p27 expression in canine mammary tumors and their metastases. Research in Veterinary Science, 88, 300–303.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Institutes of Health grants R01 DK072102 and P30 DK057521, the William F. Milton Fund, and the MGH interim support fund (to M. S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masako Shimada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimada, M. Overview of Calpain-Mediated Regulation of Bone and Fat Mass in Osteoblasts. Cell Biochem Biophys 66, 23–28 (2013). https://doi.org/10.1007/s12013-012-9393-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9393-7

Keywords

Navigation