Skip to main content

Advertisement

Log in

Fluorescence Lifetime Imaging of Endogenous Fluorophores in Histopathology Sections Reveals Differences Between Normal and Tumor Epithelium in Carcinoma In Situ of the Breast

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The classical examination of histology slides from a mouse model of breast cancer has been extended in this study to incorporate modern multiphoton excitation and photon-counting techniques. The advantage of such approaches is quantification of potential diagnostic parameters from the fluorescence emission signal, whereby the traditional descriptive staging process is complemented by measurements of fluorescence intensity, lifetime, and spectra. We explored whether the clinical “gold standard” of eosin and hematoxylin stained histology slides would provide optical biomarker signatures of diagnostic value. Alternatively, we examined unstained slides for changes in intensity and/or fluorescence lifetime of relevant endogenous fluorophores. Although eosin provided a strong emission signal and had distinct spectra and lifetime, we found that it was not useful as a fluorescent biological marker, particularly when combined with hematoxylin. Instead, we found that the properties of the fluorescence from the endogenous fluorophores NADH and FAD were indicative of the pathological state of the tissue. Comparing regions of carcinoma in situ to adjacent histologically normal regions, we found that tumor cells produced higher intensity and had a longer fluorescence lifetime. By imaging at 780 nm and 890 nm excitation, we were able to differentiate the fluorescence of FAD from NADH by separating the emission spectra. The shift to a longer lifetime in tumor cells was independent of the free or bound state of FAD and NADH, and of the excitation wavelength. Most forms of cancer have altered metabolism and redox ratios; here we present a method that has potential for early detection of these changes, which are preserved in fixed tissue samples such as classic histopathology slides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eliceiri, K. W., Fan, C. H., Lyons, G. E., & White, J. G. (2003). Analysis of histology specimens using lifetime multiphoton microscopy. Journal of Biomedical Optics, 8, 376–380.

    Article  PubMed  Google Scholar 

  2. Saikia, B., Gupta, K., & Saikia, U. N. (2008). The modern histopathologist: In the changing face of time. Diagnostic Pathology, 3, 25.

    Article  PubMed  Google Scholar 

  3. Chance, B., Cohen, P., Jobsis, F., & Schoener, B. (1962). Intracellular oxidation–reduction states in vivo. Science, 137, 499–508.

    Article  PubMed  CAS  Google Scholar 

  4. Warburg, O., Dickens, F., & Kaiser Wilhelm-Institut für Biologie, B. (1930). The metabolism of tumours: Investigations from the Kaiser-Wilhelm Institute for Biology, Berlin-Dahlem. London: Constable.

  5. Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer, 4, 891–899.

    Article  PubMed  CAS  Google Scholar 

  6. Pedersen, P. L. (2007). Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. Journal of Bioenergetics and Biomembranes, 39, 211–222.

    Article  PubMed  CAS  Google Scholar 

  7. Lehninger, A. L., Nelson, D. L., & Cox, M. M. (1993). Principles of biochemistry (Chapter 18, pp. 542–594). New York: Worth Publishers.

  8. Gillies, R. J., & Gatenby, R. A. (2007). Adaptive landscapes and emergent phenotypes: Why do cancers have high glycolysis? Journal of Bioenergetics and Biomembranes, 39, 251–257.

    Article  PubMed  CAS  Google Scholar 

  9. Naumov, G. N., Akslen, L. A., & Folkman, J. (2006). Role of angiogenesis in human tumor dormancy: Animal models of the angiogenic switch. Cell Cycle, 5, 1779–1787.

    PubMed  CAS  Google Scholar 

  10. Yossepowitch, O., Pinchuk, I., Gur, U., Neumann, A., Lichtenberg, D., & Baniel, J. (2007). Advanced but not localized prostate cancer is associated with increased oxidative stress. Journal of Urology, 178, 1238–1243 (discussion 1243–1234).

    Article  PubMed  CAS  Google Scholar 

  11. Zipfel, W. R., Williams, R. M., Christie, R., Nikitin, A. Y., Hyman, B. T., & Webb, W. W. (2003). Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proceedings of the National Academy of Sciences of the United States of America, 100, 7075–7080.

    Article  PubMed  CAS  Google Scholar 

  12. Chorvat, D., Jr., & Chorvatova, A. (2006). Spectrally resolved time-correlated single photon counting: A novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes. European Biophysics Journal, 36, 73–83.

    Article  PubMed  Google Scholar 

  13. Denk, W., Strickler, J. H., & Webb, W. W. (1990). Two-photon laser scanning fluorescence microscopy. Science, 248, 73–76.

    Article  PubMed  CAS  Google Scholar 

  14. Skala, M. C., Squirrell, J. M., Vrotsos, K. M., Eickhoff, J. C., Gendron-Fitzpatrick, A., Eliceiri, K. W., et al. (2005). Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Research, 65, 1180–1186.

    Article  PubMed  CAS  Google Scholar 

  15. Kirkpatrick, N. D., Brewer, M. A., & Utzinger, U. (2007). Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy. Cancer Epidemiology, Biomarkers and Prevention, 16, 2048–2057.

    Article  PubMed  CAS  Google Scholar 

  16. Yan, L., Rueden, C. T., White, J. G., & Eliceiri, K. W. (2006). Applications of combined spectral lifetime microscopy for biology. Biotechniques 41, 249, 251, 253 passim.

    Google Scholar 

  17. Bird, D. K., Eliceiri, K. W., Fan, C. H., & White, J. G. (2004). Simultaneous two-photon spectral and lifetime fluorescence microscopy. Applied Optics, 43, 5173–5182.

    Article  PubMed  Google Scholar 

  18. Bird, D. K., Yan, L., Vrotsos, K. M., Eliceiri, K. W., Vaughan, E. M., Keely, P. J., et al. (2005). Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Research, 65, 8766–8773.

    Article  PubMed  CAS  Google Scholar 

  19. Tadrous, P. J., Siegel, J., French, P. M., Shousha, S., Lalani el, N., & Stamp, G. W. (2003). Fluorescence lifetime imaging of unstained tissues: Early results in human breast cancer. Journal of Pathology, 199, 309–317.

    Article  PubMed  Google Scholar 

  20. Esposito, A., Gerritsen, H. C., Oggier, T., Lustenberger, F., & Wouters, F. S. (2006). Innovating lifetime microscopy: A compact and simple tool for life sciences, screening, and diagnostics. Journal of Biomedical Optics, 11, 34016.

    Article  PubMed  Google Scholar 

  21. Skala, M. C., Riching, K. M., Bird, D. K., Gendron-Fitzpatrick, A., Eickhoff, J., Eliceiri, K. W., et al. (2007). In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia. Journal of Biomedical Optics, 12, 024014.

    Article  PubMed  Google Scholar 

  22. Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Knittel, J. G., Yan, L., Rueden, C. T., et al. (2008). Collagen density promotes mammary tumor initiation and progression. BMC Medicine, 6, 11.

    Article  PubMed  Google Scholar 

  23. Lin, E. Y., Jones, J. G., Li, P., Zhu, L., Whitney, K. D., Muller, W. J., et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. American Journal of Pathology, 163, 2113–2126.

    PubMed  Google Scholar 

  24. Guy, C. T., Cardiff, R. D., & Muller, W. J. (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Molecular and Cellular Biology, 12, 954–961.

    PubMed  CAS  Google Scholar 

  25. Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J., & Keely, P. J. (2003). ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. Journal of Cell Biology, 163, 583–595.

    Article  PubMed  CAS  Google Scholar 

  26. Provenzano, P. P., Rueden, C. T., Trier, S. M., Yan, L., Ponik, S. M., Inman, D. R., et al. (2008). Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and exogenous fluorophores in breast cancer. Journal of Biomedical Optics, 13, 031220.

    Article  PubMed  Google Scholar 

  27. Apgar, J. M., Juarranz, A., Espada, J., Villanueva, A., Canete, M., & Stockert, J. C. (1998). Fluorescence microscopy of rat embryo sections stained with haematoxylin–eosin and Masson’s trichrome method. Journal of Microscopy, 191, 20–27.

    Article  PubMed  CAS  Google Scholar 

  28. Espada, J., Valverde, P., & Stockert, J. C. (1993). Selective fluorescence of eosinophilic structures in grasshopper and mammalian testis stained with haematoxylin–eosin. Histochemistry, 99, 385–390.

    Article  PubMed  CAS  Google Scholar 

  29. Fujimoto, D. (1977). Isolation and characterization of a fluorescent material in bovine achilles tendon collagen. Biochemical and Biophysical Research Communications, 76, 1124–1129.

    Article  PubMed  CAS  Google Scholar 

  30. Eyre, D. R., Paz, M. A., & Gallop, P. M. (1984). Cross-linking in collagen and elastin. Annual Review of Biochemistry, 53, 717–748.

    Article  PubMed  CAS  Google Scholar 

  31. Kirkpatrick, N. D., Hoying, J. B., Botting, S. K., Weiss, J. A., & Utzinger, U. (2006). In vitro model for endogenous optical signatures of collagen. Journal of Biomedical Optics, 11, 054021.

    Article  PubMed  Google Scholar 

  32. Lilledahl, M. B., Haugen, O. A., de Lange Davies, C., & Svaasand, L. O. (2007). Characterization of vulnerable plaques by multiphoton microscopy. Journal of Biomedical Optics, 12, 044005.

    Article  PubMed  Google Scholar 

  33. Huang, S., Heikal, A. A., & Webb, W. W. (2002). Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophysical Journal, 82, 2811–2825.

    Article  PubMed  CAS  Google Scholar 

  34. Wu, Y., & Qu, J. Y. (2006). Autofluorescence spectroscopy of epithelial tissues. Journal of Biomedical Optics, 11, 054023.

    Article  PubMed  Google Scholar 

  35. Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed., p. 954). New York, Berlin: Springer.

    Google Scholar 

  36. Suhling, K., French, P. M., & Phillips, D. (2005). Time-resolved fluorescence microscopy. Photochemical & Photobiological Sciences, 4, 13–22.

    Article  CAS  Google Scholar 

  37. van Manen, H. J., Verkuijlen, P., Wittendorp, P., Subramaniam, V., van den Berg, T. K., Roos, D., et al. (2008). Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy. Biophysical Journal, 94, L67–L69.

    Article  PubMed  Google Scholar 

  38. Suhling, K., Siegel, J., Phillips, D., French, P. M., Leveque-Fort, S., Webb, S. E., et al. (2002). Imaging the environment of green fluorescent protein. Biophysical Journal, 83, 3589–3595.

    Article  PubMed  CAS  Google Scholar 

  39. Villette, S., Pigaglio-Deshayes, S., Vever-Bizet, C., Validire, P., & Bourg-Heckly, G. (2006). Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P)H. Photochemical & Photobiological Sciences, 5, 483–492.

    Article  CAS  Google Scholar 

  40. Vishwasrao, H. D., Heikal, A. A., Kasischke, K. A., & Webb, W. W. (2005). Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. Journal of Biological Chemistry, 280, 25119–25126.

    Article  PubMed  CAS  Google Scholar 

  41. Chaiswing, L., Bourdeau-Heller, J. M., Zhong, W., & Oberley, T. D. (2007). Characterization of redox state of two human prostate carcinoma cell lines with different degrees of aggressiveness. Free Radical Biology and Medicine, 43, 202–215.

    Article  PubMed  CAS  Google Scholar 

  42. Chaiswing, L., Zhong, W., Cullen, J. J., Oberley, L. W., & Oberley, T. D. (2008). Extracellular redox state regulates features associated with prostate cancer cell invasion. Cancer Research, 68, 5820–5826.

    Article  PubMed  CAS  Google Scholar 

  43. Hochachka, P. W., Rupert, J. L., Goldenberg, L., Gleave, M., & Kozlowski, P. (2002). Going malignant: the hypoxia-cancer connection in the prostate. Bioessays, 24, 749–757.

    Article  PubMed  CAS  Google Scholar 

  44. Tanaka, F., Tamai, N., Yamazaki, I., Nakashima, N., & Yoshihara, K. (1989). Temperature-induced changes in the coenzyme environment of D-amino acid oxidase revealed by the multiple decays of FAD fluorescence. Biophysical Journal, 56, 901–909.

    Article  PubMed  CAS  Google Scholar 

  45. Lakowicz, J. R., Szmacinski, H., Nowaczyk, K., & Johnson, M. L. (1992). Fluorescence lifetime imaging of free and protein-bound NADH. Proceedings of the National Academy of Sciences of the United States of America, 89, 1271–1275.

    Article  PubMed  CAS  Google Scholar 

  46. Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B., & Gillies, R. J. (2006). Acid-mediated tumor invasion: A multidisciplinary study. Cancer Research, 66, 5216–5223.

    Article  PubMed  CAS  Google Scholar 

  47. Nakabayashi, T., Wang, H. P., Kinjo, M., & Ohta, N. (2008). Application of fluorescence lifetime imaging of enhanced green fluorescent protein to intracellular pH measurements. Photochemical & Photobiological Sciences, 7, 668–670.

    Article  CAS  Google Scholar 

  48. Gannot, I., Ron, I., Hekmat, F., Chernomordik, V., & Gandjbakhche, A. (2004). Functional optical detection based on pH dependent fluorescence lifetime. Lasers in Surgery and Medicine, 35, 342–348.

    Article  PubMed  Google Scholar 

  49. Hille, C., Berg, M., Bressel, L., Munzke, D., Primus, P., Lohmannsroben, H. G., et al. (2008). Time-domain fluorescence lifetime imaging for intracellular pH sensing in living tissues. Analytical and Bioanalytical Chemistry, 391, 1871–1879.

    Article  PubMed  CAS  Google Scholar 

  50. Lakowicz, J. R., Gratton, E., Cherek, H., Maliwal, B. P., & Laczko, G. (1984). Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore–protein complex using frequency-domain phase-modulation fluorometry. Journal of Biological Chemistry, 259, 10967–10972.

    PubMed  CAS  Google Scholar 

  51. Lakowicz, J. R. (2000). On spectral relaxation in proteins. Photochemistry and Photobiology, 72, 421–437.

    Article  PubMed  CAS  Google Scholar 

  52. De Beule, P. A., Dunsby, C., Galletly, N. P., Stamp, G. W., Chu, A. C., Anand, U., et al. (2007). A hyperspectral fluorescence lifetime probe for skin cancer diagnosis. Review of Scientific Instruments, 78, 123101.

    Article  PubMed  Google Scholar 

  53. Galletly, N. P., McGinty, J., Dunsby, C., Teixeira, F., Requejo-Isidro, J., Munro, I., et al. (2008). Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin. British Journal of Dermatology, 159, 152–161.

    Article  PubMed  CAS  Google Scholar 

  54. Skala, M. C., Riching, K. M., Gendron-Fitzpatrick, A., Eickhoff, J., Eliceiri, K. W., White, J. G., et al. (2007). In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proceedings of the National Academy of Sciences of the United States of America, 104, 19494–19499.

    Article  PubMed  CAS  Google Scholar 

  55. Leppert, J., Krajewski, J., Kantelhardt, S. R., Schlaffer, S., Petkus, N., Reusche, E., et al. (2006). Multiphoton excitation of autofluorescence for microscopy of glioma tissue. Neurosurgery, 58, 759–767.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Mary Kay Ash Charitable Foundation award (#080-07), a NIH NCI CA 076537 award to P.J.K., and a DOD award (W81XWH-04-1-042) to P.P.P. Histopathology slides were prepared by Jane Weeks at McArdle labs at the University of Wisconsin. We thank the members of our laboratory for discussions and comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia J. Keely.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Endogenous fluorescence was preserved in histopathology slides. MCF10A cells cultured in a 3 mg/mL collagen gel were imaged in live samples (upper panels) that were then fixed, paraffin-embedded, and mounted to slides (lower panels). MCF10A cells imaged in fixed, sectioned samples (lower panels) maintained the endogenous fluorophores, and lifetime values, of those noted in live MCF10A cells (upper panels). The acini imaged in gels is not only similar in appearance to groups of cells in slides cut from the same gel, they have similar fluorescence lifetime (seen in the table below, n = number of total images analyzed from live and fixed tissue from 6 experiments) and identical spectra. An excitation wavelength of 780 nm was used and data was mapped using the same lifetime color range, scale bar is 50 μm. (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conklin, M.W., Provenzano, P.P., Eliceiri, K.W. et al. Fluorescence Lifetime Imaging of Endogenous Fluorophores in Histopathology Sections Reveals Differences Between Normal and Tumor Epithelium in Carcinoma In Situ of the Breast. Cell Biochem Biophys 53, 145–157 (2009). https://doi.org/10.1007/s12013-009-9046-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9046-7

Keywords

Navigation