Skip to main content

Advertisement

Log in

Insulin signaling and glucose transport in insulin resistant human skeletal muscle

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Insulin increases glucose uptake and metabolism in skeletal muscle by signal transduction via protein phosphorylation cascades. Insulin action on signal transduction is impaired in skeletal muscle from Type 2 diabetic subjects, underscoring the contribution of molecular defects to the insulin resistant phenotype. This review summarizes recent work to identify downstream intermediates in the insulin signaling pathways governing glucose homeostasis, in an attempt to characterize the molecular mechanism accounting for skeletal muscle insulin resistance in Type 2 diabetes. Furthermore, the effects of pharmaceutical treatment of Type 2 diabetic patients on insulin signaling and glucose uptake are discussed. The identification and characterization of pathways governing insulin action on glucose metabolism will facilitate the development of strategies to improve insulin sensitivity in an effort to prevent and treat Type 2 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DeFronzo, R. A., Jacot, E., Jequier, E., Maeder, E., Wahren, J., & Felber, J. P. (1981). The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes, 30, 1000–1007.

    PubMed  CAS  Google Scholar 

  2. DeFronzo, R. A., Gunnarsson, R., Bjorkman, O., Olsson, M., & Wahren, J. (1985). Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (Type II) diabetes mellitus. Journal of Clinical Investigation, 76, 149–155.

    PubMed  CAS  Google Scholar 

  3. Kelley, D., Mitrakou, A., Marsh, H., Schwenk, F., Benn, J., Sonnenberg, G., Arcangeli, M., Aoki, T., Sorensen, J., Berger, M., Sonksen, P., & Gerich, J. (1988). Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. Journal of Clinical Investigation, 81, 1563–1571.

    PubMed  CAS  Google Scholar 

  4. Moore, M. C., Cherrington, A. D., & Wasserman, D. H. (2003). Regulation of hepatic and peripheral glucose disposal. Best Practice & Research. Clinical Endocrinology & Metabolism, 17, 343–364.

    Article  CAS  Google Scholar 

  5. Joost, H.-G., Bell, G. I., Best, J. D., Birnbaum, M. J., Charron, M. J., Chen, Y. T., Doege, H., James, D. E., Lodish, H. F., Moley, K. H., Moley, J. F., Mueckler, M., Rogers, S., Schurmann, A., Seino, S., & Thorens, B. (2002). Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. American Journal of Physiology. Endocrinology and Metabolism, 282, E974–E976.

    PubMed  CAS  Google Scholar 

  6. Scheepers, A., Joost, H. G., & Schurmann, A. (2004). The glucose transporter families SGLT and GLUT: Molecular basis of normal and aberrant function. Journal of Parenteral and Enteral Nutrition, 28, 364–371.

    PubMed  CAS  Google Scholar 

  7. Birnbaum, M. J. (1989). Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell, 57, 305–315.

    Article  PubMed  CAS  Google Scholar 

  8. Fukumoto, H., Kayano, T., Buse, J. B., Edwards, Y., Pilch, P. F., Bell, G. I., & Seino, S. (1989). Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. Journal of Biological Chemistry, 264, 7776–7779.

    PubMed  CAS  Google Scholar 

  9. James, D. E., Strube, M., & Muecdler, M. (1989). Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature, 338, 83–87.

    Article  PubMed  CAS  Google Scholar 

  10. Douen, A. G., Ramlal, T., Rastogi, S., Bilan, P. J., Cartee, G. D., Vranic, M., Holloszy, J. O., & Klip, A. (1990). Exercise induces recruitment of the “insulin-responsive glucose transporter”. Evidence for distinct intracellular insulin- and exercise- recruitable transporter pools in skeletal muscle. Journal of Biological Chemistry, 265, 13427–13430.

    PubMed  CAS  Google Scholar 

  11. Hirshman, M. F., Goodyear, L. J., Wardzala, L. J., Horton, E. D., & Horton, E. S. (1990). Identification of an intracellular pool of glucose transporters from basal and insulin-stimulated rat skeletal muscle. Journal of Biological Chemistry, 265, 987–991.

    PubMed  CAS  Google Scholar 

  12. Kristiansen, S., Hargreaves, M., & Richter, E. A. (1996). Exercise-induced increase in glucose transport, G. L.,UT-4, and VAMP-2 in plasma membrane from human muscle. American Journal of Physiology. Endocrinology and Metabolism, 270, E197-201.

    CAS  Google Scholar 

  13. Ryder, J., Yang, J., Galuska, D., Rincon, J., Bjornholm, M., Krook, A., Lund, S., Pedersen, O., Wallberg-Henriksson, H., Zierath, J. R., & Holman, G (2000). Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes, 49, 647–654.

    Article  PubMed  CAS  Google Scholar 

  14. Cline, G. W., Petersen, K. F., Krssak, M., Shen, J., Hundal, R. S., Trajanoski, Z., Inzucchi, S., Dresner, A., Rothman, D. L., & Shulman, G. I. (1999). Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in Type 2 diabetes. The New England Journal of Medicine, 341, 240–246.

    Article  PubMed  CAS  Google Scholar 

  15. Handberg, A., Vaag, A., Damsbo, P., Beck-Nielsen, H., & Vinten, J (1990). Expression of insulin regulatable glucose transporters in skeletal muscle from type 2 (non-insulin-dependent) diabetic patients. Diabetologia, 33, 625–627.

    Article  PubMed  CAS  Google Scholar 

  16. Pedersen, O., Bak, J. F., Andersen, P. H., Lund, S., Moller, D. E., Flier, J. S., & Kahn, B. B. (1990). Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes, 39, 865–870.

    Article  PubMed  CAS  Google Scholar 

  17. Shepherd, P. R., & Kahn, B. B. (1999). Glucose transporters and insulin action: Implications for insulin resistance and diabetes mellitus. The New England Journal of Medicine, 341, 248–257.

    Article  PubMed  CAS  Google Scholar 

  18. Cushman, S. W., & Wardzala, L. J. (1980). Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. Journal of Biological Chemistry, 255, 4758–4762.

    PubMed  CAS  Google Scholar 

  19. Suzuki, K., & Kono, T (1980). Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proceedings of the National Academy of Sciences of the United States of America, 77, 2542–2545.

    Article  PubMed  CAS  Google Scholar 

  20. James, D. E., Brown, R., Navarro, J., & Pilch, P. F. (1988). Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein. Nature, 333, 183–185.

    Article  PubMed  CAS  Google Scholar 

  21. Holman, G. D., Kozka, I. J., Clark, A. E., Flower, C. J., Saltis, J., Habberfield, A. D., Simpson, I. A., & Cushman, S. W. (1990). Cell surface labeling of glucose transporter isoform GLUT4 by bis- mannose photolabel. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester. Journal of Biological Chemistry, 265, 18172–18179.

    PubMed  CAS  Google Scholar 

  22. Holman, G. D., & Sandoval, I. V. (2001). Moving the insulin-regulated glucose transporter GLUT4 into and out of storage. Trends in Cell Biology, 11, 173–179.

    Article  PubMed  CAS  Google Scholar 

  23. Garvey, W. T., Maianu, L., Zhu, J.-H., Brechtel-Hook, G., Wallace, P., & Baron, A. D. (1998). Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. Journal of Clinical Investigation, 101, 2377–2386.

    PubMed  CAS  Google Scholar 

  24. Huang, C., Thirone, A. C. P., Huang, X., & Klip, A (2005). Differential contribution of insulin receptor substrates 1 versus 2 to insulin signaling and glucose uptake in L6 myotubes. Journal of Biological Chemistry, 280, 19426–19435.

    Article  PubMed  CAS  Google Scholar 

  25. Kido, Y., Burks, D. J., Withers, D., Bruning, J. C., Kahn, C. R., White, M. F., & Accili, D (2000). Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. Journal of Clinical Investigation, 105, 199–205.

    PubMed  CAS  Google Scholar 

  26. Withers, D. J., Gutierrez, J. S., Towery, H., Burks, D. J., Ren, J.-M., Previs, S., Zhang, Y., Bernal, D., Pons, S., Shulman, G. I., Bonner-Weir, S., & White, M. F. (1998). Disruption of IRS-2 causes type 2 diabetes in mice. Nature, 391, 900–904.

    Article  PubMed  CAS  Google Scholar 

  27. Cantrell, D. A. (2001). Phosphoinositide 3-kinase signalling pathways. Journal of Cell Science, 114, 1439–1445.

    PubMed  CAS  Google Scholar 

  28. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378, 785–789.

    Article  PubMed  CAS  Google Scholar 

  29. Tanti, J. F., Grillo, S., Gremeaux, T., Coffer, P. J., Van Obberghen, E., & Le Marchand-Brustel, Y (1997). Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology, 138, 2005–2010.

    Article  PubMed  CAS  Google Scholar 

  30. Ueki, K., Yamamoto-Honda, R., Kaburagi, Y., Yamauchi, T., Tobe, K., Burgering, B. M. T., Coffer, P. J., Komuro, I., Akanuma, Y., Yazaki, Y., & Kadowaki, T (1998). Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. Journal of Biological Chemistry, 273, 5315–5322.

    Article  PubMed  CAS  Google Scholar 

  31. Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., & Hemmings, B. A. (1996). Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO Journal, 15, 6541–6551.

    PubMed  CAS  Google Scholar 

  32. Feng, J., Park, J., Cron, P., Hess, D., & Hemmings, B. A. (2004). Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent Protein Kinase. Journal of Biological Chemistry, 279, 41189–41196.

    Article  PubMed  CAS  Google Scholar 

  33. Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science, 307, 1098–1101.

    Article  PubMed  CAS  Google Scholar 

  34. Dong, L. Q., & Liu, F. (2005). PDK2: The missing piece in the receptor tyrosine kinase signaling pathway puzzle. American Journal of Physiology. Endocrinology and Metabolism, 289, E187–196.

    Article  PubMed  CAS  Google Scholar 

  35. Alessi, D. R., James, S. R., Downes, C. P., Holmes, A. B., Gaffney, P. R., Reese, C. B., & Cohen, P (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Current Biology, 7, 261–269.

    Article  PubMed  CAS  Google Scholar 

  36. Mora, A., Komander, D., van Aalten, D. M. F., & Alessi, D. R. (2004). PDK1, the master regulator of AGC kinase signal transduction. Seminars in Cell & Developmental Biology, 15, 161–170.

    Article  CAS  Google Scholar 

  37. Cho, H., Thorvaldsen, J. L., Chu, Q., Feng, F., & Birnbaum, M. J. (2001). Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. Journal of Biological Chemistry, 276, 38349–38352.

    Article  PubMed  CAS  Google Scholar 

  38. Cho, H., Mu, J., Kim, J. K., Thorvaldsen, J. L., Chu, Q., Crenshaw, E. B. III, Kaestner, K. H., Bartolomei, M. S., Shulman, G. I., & Birnbaum, M. J. (2001). Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBbeta). Science, 292, 1728–1731.

    Article  PubMed  CAS  Google Scholar 

  39. Chou, M. M., Hou, W., Johnson, J., Graham, L. K., Lee, M. H., Chen, C. S., Newton, A. C., Schaffhausen, B. S., & Toker, A (1998). Regulation of protein kinase C zeta by PI 3-kinase and PDK-1. Current Biology, 8, 1069–1077.

    Article  PubMed  CAS  Google Scholar 

  40. Bandyopadhyay, G., Standaert, M. L., Galloway, L., Moscat, J., & Farese, R. V. (1997). Evidence for involvement of protein kinase C (PKC)-zeta and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes. Endocrinology, 138, 4721–4731.

    Article  PubMed  CAS  Google Scholar 

  41. Cormont, M., & Le Marchand-Brustel, Y (2001). The role of small G-proteins in the regulation of glucose transport. Molecular Membrane Biology, 18, 213–220.

    Article  PubMed  CAS  Google Scholar 

  42. Kane, S., Sano, H., Liu, S. C. H., Asara, J. M., Lane, W. S., Garner, C. C., & Lienhard, G. E. (2002). A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-Activating Protein (GAP) domain. Journal of Biological Chemistry, 277, 22115–22118.

    Article  PubMed  CAS  Google Scholar 

  43. Sano, H., Kane, S., Sano, E., Miinea, C. P., Asara, J. M., Lane, W. S., Garner, C. W., & Lienhard, G. E. (2003). Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. Journal of Biological Chemistry, 278, 14599–14602.

    Article  PubMed  CAS  Google Scholar 

  44. Zeigerer, A., McBrayer, M. K., & McGraw, T. E. (2004). Insulin stimulation of GLUT4 exocytosis, but not its inhibition of endocytosis, is dependent on RabGAP AS160. Molecular Biology of the Cell, 15, 4406–4415.

    Article  PubMed  CAS  Google Scholar 

  45. Matsumoto, Y., Imai, Y., Lu Yoshida, N., Sugita, Y., Tanaka, T., Tsujimoto, G., Saito, H., & Oshida, T (2004). Upregulation of the transcript level of GTPase activating protein KIAA0603 in T cells from patients with atopic dermatitis. FEBS Letters, 572, 135–140.

    Article  PubMed  CAS  Google Scholar 

  46. Arias, E. B., Kim, J., & Cartee, G. D. (2004). Prolonged incubation in PUGNAc results in increased protein O-linked glycosylation and insulin resistance in rat skeletal muscle. Diabetes, 53, 921–930.

    Article  PubMed  CAS  Google Scholar 

  47. Bruss, M. D., Arias, E. B., Lienhard, G. E., & Cartee, G. D. (2005). Increased phosphorylation of Akt Substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes, 54, 41–50.

    Article  PubMed  CAS  Google Scholar 

  48. Miinea, C. P., Sano, H., Kane, S., Sano, E., Fukuda, M., Peranen, J., Lane, W. S., & Lienhard, G. E. (2005). AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase activating protein domain. Biochemistry Journal, 391, 87–93.

    Article  CAS  Google Scholar 

  49. Leng, Y., Karlsson, H. K., & Zierath, J. R. (2004). Insulin signaling defects in type 2 diabetes. Reviews in Endocrine & Metabolic Disorders, 5, 111–117.

    Article  CAS  Google Scholar 

  50. Arner, P., Pollare, T., Lithell, H., & Livingston, J. N. (1987). Defective insulin receptor tyrosine kinase in human skeletal muscle in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 30, 437–440.

    Article  PubMed  CAS  Google Scholar 

  51. Krook, A., Bjornholm, M., Galuska, D., Jiang, X., Fahlman, R., Myers, M., Wallberg-Henriksson, H., & Zierath, J. R. (2000). Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes, 49, 284–292.

    Article  PubMed  CAS  Google Scholar 

  52. Ciaraldi, T., Carter, L., Rehman, N., Mohideen, P., Mudaliar, S., & Henry, R (2002). Insulin and insulin-like growth factor-1 action on human skeletal muscle: Preferential effects of insulin-like growth factor-1 in type 2 diabetic subjects. Metabolism, 51, 1171–1179.

    Article  PubMed  CAS  Google Scholar 

  53. Caro, J. F., Sinha, M. K., Raju, S. M., Ittoop, O., Pories, W. J., Flickinger, E. G., Meelheim, D., & Dohm, G. L. (1987). Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. Journal of Clinical Investigation, 79, 1330–1337.

    PubMed  CAS  Google Scholar 

  54. Maegawa, H., Shigeta, Y., Egawa, K., & Kobayashi, M (1991). Impaired autophosphorylation of insulin receptors from abdominal skeletal muscles in non-obese subjects with NIDDM. Diabetes, 40, 815–819.

    Article  PubMed  CAS  Google Scholar 

  55. Klein, H. H., Vestergaard, H., Kotzke, G., & Pedersen, O (1995). Elevation of serum insulin concentration during euglycemic hyperinsulinemic clamp studies leads to similar activation of insulin receptor kinase in skeletal muscle of subjects with and without NIDDM. Diabetes, 44, 1310–1317.

    Article  PubMed  CAS  Google Scholar 

  56. Meyer, M. M., Levin, K., Grimmsmann, T., Beck-Nielsen, H., & Klein, H. H. (2002). Insulin signalling in skeletal muscle of subjects with or without Type II-diabetes and first degree relatives of patients with the disease. Diabetologia, 45, 813–822.

    Article  PubMed  CAS  Google Scholar 

  57. Kim, Y.-B., Kotani, K., Ciaraldi, T. P., Henry, R. R., & Kahn, B. B. (2003). Insulin-stimulated protein kinase C lambda/zeta activity is reduced in skeletal muscle of humans with obesity and Type 2 diabetes: Reversal with weight reduction. Diabetes, 52, 1935–1942.

    Article  PubMed  CAS  Google Scholar 

  58. Nolan, J. J., Freidenberg, G., Henry, R., Reichart, D., & Olefsky, J. M. (1994). Role of human skeletal muscle insulin receptor kinase in the In vivo insulin resistance of non-insulin-dependent diabetes mellitus and obesity. The Journal of Clinical Endocrinology and Metabolism, 78, 471–477.

    Article  PubMed  CAS  Google Scholar 

  59. Goodyear, L. J., Giorgino, F., Sherman, L. A., Carey, J., Smith, R. J., & Dohm, G. L. (1995). Insulin receptor phosphorylation, insulin receptor substrate-1 phosphorylation, and phosphatidylinositol 3-kinase activity are decreased in intact skeletal muscle strips from obese subjects. Journal of Clinical Investigation, 95, 2195–2204.

    PubMed  CAS  Google Scholar 

  60. Björnholm, M., Kawano, Y., Lehtihet, M., & Zierath, J. R. (1997). Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after In vivo insulin stimulation. Diabetes, 46, 524–527.

    Article  PubMed  Google Scholar 

  61. Cusi, K., Maezono, K., Osman, A., Pendergrass, M., Patti, M. E., Pratipanawatr, T., DeFronzo, R. A., Kahn, C. R., & Mandarino, L. J. (2000). Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. Journal of Clinical Investigation, 105, 311–320.

    Article  PubMed  CAS  Google Scholar 

  62. Bouzakri, K., Roques, M., Gual, P., Espinosa, S., Guebre-Egziabher, F., Riou, J.-P., Laville, M., Le Marchand-Brustel, Y., Tanti, J-F., & Vidal, H (2003). Reduced activation of phosphatidylinositol-3 kinase and increased serine 636 phosphorylation of insulin receptor substrate-1 in primary culture of skeletal muscle cells from patients with Type 2 diabetes. Diabetes, 52, 1319–1325.

    Article  PubMed  CAS  Google Scholar 

  63. Beeson, M., Sajan, M. P., Dizon, M., Grebenev, D., Gomez-Daspet, J., Miura, A., Kanoh, Y., Powe, J., Bandyopadhyay, G., Standaert, M. L., & Farese, R. V. (2003). Activation of protein kinase C-zeta by insulin and phosphatidylinositol-3,4,5-(PO4)3 is defective in muscle in Type 2 diabetes and impaired glucose tolerance: Amelioration by rosiglitazone and exercise. Diabetes, 52, 1926–1934.

    Article  PubMed  CAS  Google Scholar 

  64. Lee, Y. H., Giraud, J., Davis, R. J., & White, M. F. (2003). c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. Journal of Biological Chemistry, 278, 2896–2902.

    Article  PubMed  CAS  Google Scholar 

  65. Aguirre, V., Werner, E. D., Giraud, J., Lee, Y. H., Shoelson, S. E., & White, M. F. (2002). Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. Journal of Biological Chemistry, 277, 1531–1537.

    Article  PubMed  CAS  Google Scholar 

  66. Kim, Y.-B., Nikoulina, S. E., Ciaraldi, T. P., Henry, R. R., & Kahn, B. B. (1999). Normal insulin-dependent activation of Akt/protein kinase B., with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. Journal of Clinical Investigation, 104, 733–741.

    PubMed  CAS  Google Scholar 

  67. Tsuchida, H., Björnholm, M., Fernström, M., Galuska, D., Johansson, P., Wallberg-Henriksson, H., Zierath, J., Lake, S., & Krook, A (2002). Gene expression of the p85a regulatory subunit of phosphatidylinositol 3-kinase in skeletal muscle from type 2 diabetic subjects. Pflugers Archive European Journal of Physiology, 445, 25–31.

    Article  CAS  Google Scholar 

  68. Krook, A., Roth, R., Jiang, X., Zierath, J. R., & Wallberg-Henriksson, H (1998). Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes, 47, 1281–1286.

    Article  PubMed  CAS  Google Scholar 

  69. Brozinick, J. T. Jr, Roberts, B. R., & Dohm, G. L. (2003). Defective signaling through Akt-2 and -3 but not Akt-1 in insulin-resistant human skeletal muscle: Potential role in insulin resistance. Diabetes, 52, 935–941.

    Article  PubMed  CAS  Google Scholar 

  70. Karlsson, H. K. R., Zierath, J. R., Kane, S., Krook, A., Lienhard, G. E., & Wallberg-Henriksson, H (2005). Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of Type 2 diabetic subjects. Diabetes, 54, 1692–1697.

    Article  PubMed  CAS  Google Scholar 

  71. Aledo J. C., Darakhshan F., & Hundal H. S. (1995). Rab4, but not the transferrin receptor, is colocalized with GLUT4 in an insulin-sensitive intracellular compartment in rat skeletal muscle. Biochemical and Biophysical Research Communications, 215, 321–328.

    Article  PubMed  CAS  Google Scholar 

  72. Sherman, L., Hirshman, M., Cormont, M., Le Marchand-Brustel, Y., & Goodyear, L (1996). Differential effects of insulin and exercise on Rab4 distribution in rat skeletal muscle. Endocrinology, 137, 266–273.

    Article  PubMed  CAS  Google Scholar 

  73. Kessler, A., Tomas, E., Immler, D., Meyer, H. E., Zorzano, A., & Eckel, J (2000). Rab11 is associated with GLUT4-containing vesicles and redistributes in response to insulin. Diabetologia, 43, 1518–1527.

    Article  PubMed  CAS  Google Scholar 

  74. Bailey, C. J., & Day, C. (2004). Metformin: Its botanical background. Practial Diabetes International, 21, 115–117.

    Article  Google Scholar 

  75. Bailey, C. J., & Turner, R. C. (1996). Metformin. The New England Journal of Medicine, 334, 574–579.

    Article  PubMed  CAS  Google Scholar 

  76. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., & Moller, D. E. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. Journal of Clinical Investigation, 108, 1167–1174.

    Article  PubMed  CAS  Google Scholar 

  77. Zierath, J. R., Ryder, J. W., Doebber, T., Woods, J., Wu, M., Ventre, J., Li, Z., McCrary, C., Berger, J., Zhang, B., & Moller, D. E. (1998). Role of skeletal muscle in thiazolidinedione insulin sensitizer (PPARgamma agonist) action. Endocrinology, 139, 5034–5041.

    Article  PubMed  CAS  Google Scholar 

  78. Patel, J., Anderson, R. J., & Rappaport, E. B. (1999). Rosiglitazone monotherapy improves glycaemic control in patients with type 2 diabetes: A twelve-week, randomized, placebo-controlled study. Diabetes, Obesity & Metabolism, 1, 165–172.

    Article  CAS  Google Scholar 

  79. Fonseca, V., Rosenstock, J., Patwardhan, R., & Salzman, A (2000). Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: A randomized controlled trial. JAMA, 283, 1695–1702.

    Article  PubMed  CAS  Google Scholar 

  80. Nolan, J. J., Jones, N. P., Patwardhan, R., & Deacon, L. F. (2000). Rosiglitazone taken once daily provides effective glycaemic control in patients with Type 2 diabetes mellitus. Diabetic Medicine, 17, 287–294.

    Article  PubMed  CAS  Google Scholar 

  81. Raskin, P., Rappaport, E. B., Cole, S. T., Yan, Y., Patwardhan, R., & Freed, M. I. (2000). Rosiglitazone short-term monotherapy lowers fasting and post-prandial glucose in patients with type II diabetes. Diabetologia, 43, 278–284.

    Article  PubMed  CAS  Google Scholar 

  82. Wolffenbuttel, B. H., Gomis, R., Squatrito, S., Jones, N. P., & Patwardhan, R. N. (2000). Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in Type 2 diabetic patients. Diabetic Medicine, 17, 40–47.

    Article  PubMed  CAS  Google Scholar 

  83. Lebovitz, H. E., Dole, J. F., Patwardhan, R., Rappaport, E. B., & Freed, M. I. (2001). Rosiglitazone monotherapy is effective in patients with type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism, 86, 280–288.

    Article  PubMed  CAS  Google Scholar 

  84. Phillips, L. S., Grunberger, G., Miller, E., Patwardhan, R., Rappaport, E. B., & Salzman, A (2001). Once- and twice-daily dosing with Rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care, 24, 308–315.

    Article  PubMed  CAS  Google Scholar 

  85. Raskin, P., Rendell, M., Riddle, M. C., Dole, J. F., Freed, M. I., & Rosenstock, J (2001). A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated Type 2 diabetes. Diabetes Care, 24, 1226–1232.

    Article  PubMed  CAS  Google Scholar 

  86. Karlsson, H. K., Hallsten, K., Bjornholm, M., Tsuchida, H., Chibalin, A. V., Virtanen, K. A., Heinonen, O. J., Lonnqvist, F., Nuutila, P., & Zierath, J. R. (2005). Effects of metformin and rosiglitazone treatment on insulin signaling and glucose uptake in patients with newly diagnosed type 2 diabetes: A randomized controlled study. Diabetes, 54, 1459–1467.

    Article  PubMed  CAS  Google Scholar 

  87. Zierath, J. R. (1995). In vitro studies of human skeletal muscle: Hormonal and metabolic regulation of glucose transport. Acta physiologica Scandinavica. Supplementum, 155, 1–96.

    CAS  Google Scholar 

  88. Stumvoll, M., Nurjhan, N., Perriello, G., Dailey, G., & Gerich, J. E. (1995). Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. The New England Journal of Medicine, 333, 550–554.

    Article  PubMed  CAS  Google Scholar 

  89. Hundal, R., Krssak, M., Dufour, S., Laurent, D., Lebon, V., Chandramouli, V., Inzucchi, S., Schumann, W., Petersen, K., Landau, B., & Shulman, G (2000). Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes, 49, 2063–2069.

    Article  PubMed  CAS  Google Scholar 

  90. Inzucchi, S. E., Maggs, D. G., Spollett, G. R., Page, S. L., Rife, F. S., Walton, V., & Shulman, G. I. (1998). Efficacy and metabolic effects of Metformin and Troglitazone in type II diabetes mellitus. The New England Journal of Medicine, 338, 867–873.

    Article  PubMed  CAS  Google Scholar 

  91. Kim, Y.-B., Ciaraldi, T. P., Kong, A., Kim, D., Chu, N., Mohideen, P., Mudaliar, S., Henry, R. R., & Kahn, B. B. (2002). Troglitazone but not metformin restores insulin-stimulated phosphoinositide 3-kinase activity and increases p110beta protein levels in skeletal muscle of type 2 diabetic subjects. Diabetes, 51, 443–448.

    Article  PubMed  CAS  Google Scholar 

  92. Petersen, K., Krssak, M., Inzucchi, S., Cline, G., Dufour, S., & Shulman, G (2000). Mechanism of troglitazone action in type 2 diabetes. Diabetes, 49, 827–831.

    Article  PubMed  CAS  Google Scholar 

  93. Carey, D. G., Cowin, G. J., Galloway, G. J., Jones, N. P., Richards, J. C., Biswas, N., & Doddrell, D. M. (2002). Effect of rosiglitazone on insulin sensitivity and body composition in Type 2 diabetic patients. Obesity Research, 10, 1008–1015.

    PubMed  CAS  Google Scholar 

  94. Miyazaki, Y., He, H., Mandarino, L. J., & DeFronzo, R. A. (2003). Rosiglitazone improves downstream insulin receptor signaling in Type 2 diabetic patients. Diabetes, 52, 1943–1950.

    Article  PubMed  CAS  Google Scholar 

  95. Miyazaki, Y., Glass, L., Triplitt, C., Matsuda, M., Cusi, K., Mahankali, A., Mahankali, S., Mandarino, L. J., & DeFronzo, R. A. (2001). Effect of rosiglitazone on glucose and non-esterified fatty acid metabolism in Type II diabetic patients. Diabetologia, 44, 2210–2219.

    Article  PubMed  CAS  Google Scholar 

  96. Mayerson, A. B., Hundal, R. S., Dufour, S., Lebon, V., Befroy, D., Cline, G. W., Enocksson, S., Inzucchi, S. E., Shulman, G. I., & Petersen, K. F. (2002). The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with Type 2 diabetes. Diabetes, 51, 797–802.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are supported by grants from the Swedish Medical Research Council, the Swedish Diabetes Association, Foundation for Scientific Studies of Diabetology, the Strategic Research Foundation (INGVAR), Novo-Nordisk Foundation, and the Commission of the European Communities (Network of Excellence EUGENE2; Contract No. LSHM-CT-2004-005272 and Integrated Project EXGENESIS; Contract No. LSHM-CT-2004-005272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juleen R. Zierath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsson, H.K.R., Zierath, J.R. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys 48, 103–113 (2007). https://doi.org/10.1007/s12013-007-0030-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0030-9

Keywords

Navigation