Skip to main content
Log in

Effects of Selenium on Liver and Muscle Contents and Urinary Excretion of Zinc, Copper, Iron and Manganese

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium is a main component of glutathione peroxidase (GPX), a key antioxidant enzyme. Other elements, such as zinc, copper, manganese and iron, are also involved in the pathogenesis of oxidative damage as well as in other important metabolic pathways. The effects of selenium supplementation on the metabolism of these elements have yield controversial results .The aim of this study is to analyse the effects of selenium supplementation on liver, muscle and urinary excretion of zinc, copper, iron and manganese in a situation of oxidative stress, such as protein deficiency. The experimental design included four groups of adult male Sprague–Dawley rats, which received the Lieber–DeCarli control diet, an isocaloric 2 % protein-containing diet and another similar two groups to which selenomethionine (6 mg/l liquid diet) was added. After sacrifice (5 weeks later), muscle, liver and serum selenium were determined, as well as muscle, liver and urinary zinc, copper, manganese and iron and liver GPX activity and liver malondialdehyde. Selenium addition led to decreased liver copper, increased muscle copper, increased copper excretion and increased liver iron, whereas zinc and manganese parameters were essentially unaltered. Muscle, liver and serum selenium were all significantly correlated with liver GPX activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown KM, Arthur JR (2001) Selenium, selenoproteins and human health: a review. Public Health Nutr 4:593–599

    Article  PubMed  CAS  Google Scholar 

  2. Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790:1478–1485

    Article  PubMed  CAS  Google Scholar 

  3. Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303

    Article  PubMed  CAS  Google Scholar 

  4. Gutowski M, Kowalczyk S (2013) A study of free radical chemistry: their role and pathophysiological significance. Acta Biochim Pol 60:1–16

    PubMed  CAS  Google Scholar 

  5. Manary MJ, Leeuwenburgh C, Heinecke JW (2000) Increased oxidative stress in kwashiorkor. J Pediatr 137:421–424

    Article  PubMed  CAS  Google Scholar 

  6. Sahin K, Sahin N, Yaralioglu S, Onderci M (2002) Protective role of supplemental vitamin E and seleneium on lipid peroxidation, vitamin E, Vitamin A, and some mineral concentrations of Japanese quails reared under heat stress. Biol Trace Elem Res 85:59–70

    Article  PubMed  CAS  Google Scholar 

  7. Pappas AC, Zoidis E, Georgiou CA, Demiris N, Surai PF, Fegeros K (2011) Influence of organic selenium supplementation on the accumulation of toxic and essential trace elements involved in the antioxidant system of chicken. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:446–454

    Article  PubMed  CAS  Google Scholar 

  8. Chareonpong-Kawamoto N, Yasumoto K (1995) Selenium deficiency as a cause of overload of iron and unbalanced distribution of other minerals. Biosci Biotechnol Biochem 59:302–306

    Article  PubMed  CAS  Google Scholar 

  9. Yur F, Dede S, Deger Y, Kilicalp D (2008) Effects of vitamin E and selenium on serum trace and major elements in horses. Biol Trace Elem Res 125:223–228

    Article  PubMed  CAS  Google Scholar 

  10. Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26:66–69

    Article  PubMed  CAS  Google Scholar 

  11. Vadasz Z, Kessler O, Akiri G, Gengrinovitch S, Kagan HM, Baruch Y, Izhak OB, Neufeld G (2005) Abnormal deposition of collagen around hepatocytes in Wilson's disease is associated with hepatocyte specific expression of lysyl oxidase and lysyl oxidase like protein-2. J Hepatol 43:499–507

    Article  PubMed  CAS  Google Scholar 

  12. Kojima-Yuasa A, Umeda K, Ohkita T, Opare Kennedy D, Nishiguchi S, Matsui-Yuasa I (2005) Role of reactive oxygen species in zinc deficiency-induced hepatic stellate cell activation. Free Radic Biol Med 39:631–640

    Article  PubMed  CAS  Google Scholar 

  13. Roussou P, Tsagarakis NJ, Kountouras D, Livadas S, Diamanti-Kandarakis E (2013) Beta-thalassemia major and female fertility: the role of iron and iron-induced oxidative stress. Anemia 2013:617204

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lieber CS, DeCarli LM (1989) Liquid diet technique of ethanol administration: 1989 update. Alcohol Alcohol 24:197–211

    PubMed  CAS  Google Scholar 

  15. Sieber F, Muir SA, Cohen EP, Fish BL, Mäder M, Schock AM, Althouse BJ, Moulder JE (2009) High-dose selenium for the mitigation of radiation injury: a pilot study in a rat model. Radiat Res 171:368–373

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Campillo N, Viñas P, López-García I, Hernández-Córdoba M (2000) Selenium determination in biological fluids using Zeeman background correction electrothermal atomic absorption spectrometry. Anal Biochem 280:195–200

    Article  PubMed  CAS  Google Scholar 

  17. Kikugawa K, Kojima T, Yamaki S, Kosugi H (1992) Interpretation of the thiobarbituric acid reactivity of rat liver and brain homogenates in the presence of ferric ion and ethylenediaminetetraacetic acid. Anal Biochem 202:249–255

    Article  PubMed  CAS  Google Scholar 

  18. Khan MZ, Szarek J, Markiewicz K (1993) Concurrent oral administration of monensin and selenium to broiler chickens: effects on concentration of different elements in the liver. Acta Vet Hung 41:365–379

    PubMed  CAS  Google Scholar 

  19. Kotyzova D, Cerná P, Lesetický L, Eybl V (2010) Trace elements status in selenium-deficient rats—interaction with cadmium. Biol Trace Elem Res 136:287–293

    Article  PubMed  CAS  Google Scholar 

  20. Finney J, Moon HJ, Ronnebaum T, Lantz M, Mure M (2014) Human copper-dependent amine oxidases. Arch Biochem Biophys 546C:19–32

    Article  CAS  Google Scholar 

  21. Ghazi Harsini S, Habibiyan M, Moeini MM, Abhdolmohammadi AR (2012) Effects of dietary selenium, vitamin E, and their combination on growth, serum metabolites, and antioxidant defense system in skeletal muscle of broilers under heat stress. Biol Trace Elem Res 148:322–330

    Article  PubMed  CAS  Google Scholar 

  22. Chmielnicka J, Zareba G, Witasik M, Brzeźnicka E (1988) Zinc–selenium interaction in the rat. Biol Trace Elem Res 15:267–276

    Article  PubMed  CAS  Google Scholar 

  23. House WA, Welch RM (1989) Bioavailability of and interactions between zinc and selenium in rats fed wheat grain intrinsically labeled with 65Zn and 75Se. J Nutr 119:916–921

    PubMed  CAS  Google Scholar 

  24. Basaranoglu M, Basaranoglu G, Sentürk H (2013) From fatty liver to fibrosis: a tale of second hit. World J Gastroenterol 19:1158–1165

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Murer SB, Aeberli I, Braegger CP, Gittermann M, Hersberger M, Leonard SW, Taylor AW, Traber MG, Zimmermann MB (2014) Antioxidant supplements reduced oxidative stress and stabilized liver function tests but did not reduce inflammation in a randomized controlled trial in obese children and adolescents. J Nutr 144:193–201

    Article  PubMed  CAS  Google Scholar 

  26. Ognjanović B, Zikić RV, Stajn A, Saicić ZS, Kostić MM, Petrović VM (1995) The effects of selenium on the antioxidant defense system in the liver of rats exposed to cadmium. Physiol Res 44:293–300

    PubMed  Google Scholar 

  27. Johansson E, Lindh U (1987) Interactions of selenium with metal ions at the cellular level. Biol Trace Elem Res 12:101–108

    Article  PubMed  CAS  Google Scholar 

  28. García-Aranda JA, Meza-Camacho C, Pandzich-Arapov S (1990) Manganese determination in blood from malnourished children. Bol Med Hosp Infant Mex 47:247–250

    PubMed  Google Scholar 

  29. Kilicalp D, Dede S, Belge F, Tatar M (2005) Effect of protein deficiency on macroelement and trace element levels of weanling rats’ small intestine and liver tissues. Biol Trace Elem Res 107:255–261

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest regarding this manuscript. No institutional grants or fundings have been received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio González-Reimers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monedero-Prieto, M.J., González-Pérez, J.M., González-Reimers, E. et al. Effects of Selenium on Liver and Muscle Contents and Urinary Excretion of Zinc, Copper, Iron and Manganese. Biol Trace Elem Res 158, 224–229 (2014). https://doi.org/10.1007/s12011-014-9928-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-9928-4

Keywords

Navigation