Skip to main content
Log in

Altered Heavy Metals and Transketolase Found in Autistic Spectrum Disorder

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Autism and autism spectrum disorder (ASD) are developmental brain disorders with complex, obscure, and multifactorial etiology. Our recent clinical survey of patient records from ASD children under the age of 6 years and their age-matched controls revealed evidence of abnormal markers of thiol metabolism, as well as a significant alteration in deposition of several heavy metal species, particularly arsenic, mercury, copper, and iron in hair samples between the groups. Altered thiol metabolism from heavy metal toxicity may be responsible for the biochemical alterations in transketolase, and are mechanisms for oxidative stress production, dysautonomia, and abnormal thiamine homeostasis. It is unknown why the particular metals accumulate, but we suspect that children with ASD may have particular trouble excreting thiol-toxic heavy metal species, many of which exist as divalent cations. Accumulation or altered mercury clearance, as well as concomitant oxidative stress, arising from redox-active metal and arsenic toxicity, offers an intriguing component or possible mechanism for oxidative stress-mediated neurodegeneration in ASD patients. Taken together, these factors may be more important to the etiology of this symptomatically diverse disease spectrum and may offer insights into new treatment approaches and avenues of exploration for this devastating and growing disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aliev G, Liu J, Shenk JC, Fischbach K, Pacheco GJ, Chen SG, Obrenovich ME, Ward WF, Richardson AG, Smith MA, Gasimov E, Perry G, Ames BN (2009) Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats. J Cell Mol Med 13(2):320–333

    Article  PubMed  CAS  Google Scholar 

  2. Aliev G, Obrenovich ME, Reddy VP, Shenk JC, Moreira PI, Nunomura A, Zhu X, Smith MA, Perry G (2008) Antioxidant therapy in Alzheimer's disease: theory and practice. Mini Rev Med Chem 8(13):1395–1406

    Article  PubMed  CAS  Google Scholar 

  3. Aliev G, Obrenovich ME, Smith MA, Perry G (2003) Hypoperfusion, mitochondria failure, oxidative stress, and Alzheimer disease. J Biomed Biotechnol 2003(3):162–163

    Article  PubMed  Google Scholar 

  4. Aliev G, Smith MA, Obrenovich ME, de la Torre JC, Perry G (2003) Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Azheimer disease. Neurotox Res 5(7):491–504

    Article  PubMed  Google Scholar 

  5. Bettendorff L, Wins P (1994) Mechanism of thiamine transport in neuroblastoma cells. Inhibition of a high affinity carrier by sodium channel activators and dependence of thiamine uptake on membrane potential and intracellular ATP. J Biol Chem 269(20):14379–14385

    PubMed  CAS  Google Scholar 

  6. Brin M (1962) Effects of thiamine deficiency and of oxythiamine on rat tissue transketolase. J Nutr 78:179–183

    PubMed  CAS  Google Scholar 

  7. Di Noia MA, Van Driesche S, Palmieri F, Yang LM, Quan S, Goodman AI, Abraham NG (2006) Heme oxygenase-1 enhances renal mitochondrial transport carriers and cytochrome C oxidase activity in experimental diabetes. J Biol Chem 281(23):15687–15693

    Article  PubMed  Google Scholar 

  8. Fido A, Al-Saad S (2005) Toxic trace elements in the hair of children with autism. Autism 9(3):290–298

    Article  PubMed  Google Scholar 

  9. Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Geier MR (2008) A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res 34(2):386–393

    Article  PubMed  Google Scholar 

  10. Gibson GE, Zhang H (2002) Interactions of oxidative stress with thiamine homeostasis promote neurodegeneration. Neurochem Int 40(6):493–504

    Article  PubMed  CAS  Google Scholar 

  11. Gorgoglione V, Laraspata D, La Piana G, Marzulli D, Lofrumento NE (2007) Protective effect of magnesium and potassium ions on the permeability of the external mitochondrial membrane. Arch Biochem Biophys 461(1):13–23

    Article  PubMed  CAS  Google Scholar 

  12. Hanson DR, Gottesman II (1976) The genetics, if any, of infantile autism and childhood schizophrenia. J Autism Child Schizophr 6(3):209–234

    Article  PubMed  CAS  Google Scholar 

  13. Holmes AS, Blaxill MF, Haley BE (2003) Reduced levels of mercury in first baby haircuts of autistic children. Int J Toxicol 22(4):277–285

    Article  PubMed  CAS  Google Scholar 

  14. James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80(6):1611–1617

    PubMed  CAS  Google Scholar 

  15. Jeyasingham MD, Pratt OE, Shaw GK, Thomson AD (1987) Changes in the activation of red blood cell transketolase of alcoholic patients during treatment. Alcohol Alcohol 22(4):359–365

    PubMed  CAS  Google Scholar 

  16. Karuppagounder SS, Xu H, Shi Q, Chen LH, Pedrini S, Pechman D, Baker H, Beal MF, Gandy SE, Gibson GE (2008) Thiamine deficiency induces oxidative stress and exacerbates the plaque pathology in Alzheimer's mouse model. Neurobiol Aging 30(10):1587–1600

    Article  PubMed  Google Scholar 

  17. Ke ZJ, DeGiorgio LA, Volpe BT, Gibson GE (2003) Reversal of thiamine deficiency-induced neurodegeneration. J Neuropathol Exp Neurol 62(2):195–207

    PubMed  CAS  Google Scholar 

  18. Kern JK, Grannemann BD, Trivedi MH, Adams JB (2007) Sulfhydryl-reactive metals in autism. J Toxicol Environ Health A 70(8):715–721

    Article  PubMed  CAS  Google Scholar 

  19. Kim JS, Hamilton DL, Blakley BR, Rousseaux CG (1991) The effects of thiamin on lead metabolism: whole body retention of lead-203. Toxicol Lett 56(1–2):43–52

    PubMed  CAS  Google Scholar 

  20. Kolevzon A, Gross R, Reichenberg A (2007) Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch Pediatr Adolesc Med 161(4):326–333

    Article  PubMed  Google Scholar 

  21. Lombard J (1998) Autism: a mitochondrial disorder? Med Hypotheses 50(6):497–500

    Article  PubMed  CAS  Google Scholar 

  22. Lonsdale D (2007) Dysautonomia, a heuristic approach to a revised model for etiology of disease. Evid Based Complement Alternat Med 6(1):3–10

    Article  PubMed  Google Scholar 

  23. Lonsdale D (2007) Three case reports to illustrate clinical applications in the use of erythrocyte transketolase. Evid Based Complement Altern Med 4(2):247–250

    Article  Google Scholar 

  24. Lonsdale D, Shamberger RJ, Audhya T (2002) Treatment of autism spectrum children with thiamine tetrahydrofurfuryl disulfide: a pilot study. Neuro Endocrinol Lett 23(4):303–308

    PubMed  CAS  Google Scholar 

  25. Massod MF, McGuire SL, Werner KR (1971) Analysis of blood transketolase activity. Am J Clin Pathol 55(4):465–470

    PubMed  CAS  Google Scholar 

  26. Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, Mandell DS, Miller LA, Pinto-Martin J, Reaven J, Reynolds AM, Rice CE, Schendel D, Windham GC (2007) The epidemiology of autism spectrum disorders. Annu Rev Public Health 28:235–258

    Article  PubMed  Google Scholar 

  27. Ogier de Baulny H, Gerard M, Saudubray JM, Zittoun J (1998) Remethylation defects: guidelines for clinical diagnosis and treatment. Eur J Pediatr 157(Suppl 2):S77–S83

    Article  PubMed  Google Scholar 

  28. Oliveira G, Diogo L, Grazina M, Garcia P, Ataide A, Marques C, Miguel T, Borges L, Vicente AM, Oliveira CR (2005) Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol 47(3):185–189

    Article  PubMed  CAS  Google Scholar 

  29. Olkowski AA, Gooneratne SR, Christensen DA (1991) The effects of thiamine and EDTA on biliary and urinary lead excretion in sheep. Toxicol Lett 59(1–3):153–159

    Article  PubMed  CAS  Google Scholar 

  30. Quig D (1998) Cysteine metabolism and metal toxicity. Altern Med Rev 3(4):262–270

    PubMed  CAS  Google Scholar 

  31. Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM (2000) Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Invest Ophthalmol Vis Sci 41(6):1473–1481

    PubMed  CAS  Google Scholar 

  32. Schanen NC (2006) Epigenetics of autism spectrum disorders. Hum Mol Genet 15(Spec No 2):R138–R150

    Article  PubMed  CAS  Google Scholar 

  33. Schenk G, Duggleby RG, Nixon PF (1998) Properties and functions of the thiamin diphosphate dependent enzyme transketolase. Int J Biochem Cell Biol 30:1297–1318

    Article  PubMed  CAS  Google Scholar 

  34. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, Napolitano C, Schwartz PJ, Joseph RM, Condouris K, Tager-Flusberg H, Priori SG, Sanguinetti MC, Keating MT (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119(1):19–31

    Article  PubMed  CAS  Google Scholar 

  35. Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT (2006) CACNA1H mutations in autism spectrum disorders. J Biol Chem 281(31):22085–22091

    Article  PubMed  CAS  Google Scholar 

  36. Wang X, Wang B, Fan Z, Shi X, Ke ZJ, Luo J (2007) Thiamine deficiency induces endoplasmic reticulum stress in neurons. Neuroscience 144(3):1045–1056

    Article  PubMed  CAS  Google Scholar 

  37. Waring RH, Ngong JM, Klovzra L (1997) Biochemical parameters in autistic children. Dev Brain Dysfunction 10:40–43

    Google Scholar 

  38. Wells DG, Baylis EM, Holoway L, Marks V (1968) Erythrocyte-transketolase activity in megaloblastic anaemia. Lancet 2(7567):543–545

    Article  PubMed  CAS  Google Scholar 

  39. Whang R, Whang DD (1990) Update: mechanisms by which magnesium modulates intracellular potassium. J Am Coll Nutr 9(1):84–85

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank James P. Frackelton M.D. [2, 3, 4] Kathy Entis and Susan Wenger, C.L.T. [2] for their technical contributions and helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derrick Lonsdale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obrenovich, M.E., Shamberger, R.J. & Lonsdale, D. Altered Heavy Metals and Transketolase Found in Autistic Spectrum Disorder. Biol Trace Elem Res 144, 475–486 (2011). https://doi.org/10.1007/s12011-011-9146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9146-2

Keywords

Navigation