Skip to main content

Advertisement

Log in

Release of Metal Ions from Orthodontic Appliances by In Vitro Studies: A Systematic Literature Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In the present work, a systematic literature review on release of metal ions from orthodontic appliances under in vitro conditions is described. Detailed and schematic analysis of used materials and applied methods (immersion media, incubation time, temperature, and analytical techniques) is provided. The PubMed search identified 40 studies, among which eight met the selection criteria. One additional study was included in the review. All the authors agreed that the doses of released metal ions were far below the toxic level and the dietary intake. Although the concentrations of metal ions in immersion media greatly differed, the general conclusions were coherent. It must be underlined that the main disadvantage of in vitro tests was that the experimental setup did not reflect in vivo conditions, e.g., the presence of biofilm, which grows on the surface of the materials in oral cavity. The presence and activity of microflora to a large extent is responsible for the process of corrosion, in particular, biodeterioration. The further scheme of in vitro research should incorporate changeable conditions of oral cavity environment (pH, dynamic conditions—saliva flow) and the presence of microbiological flora (microbiological attack) in the experimental design and, first of all, the real proportions of appliance elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eliades T, Bourauel C (2005) Intraoral aging of orthodontic materials: the picture we miss and its clinical relevance. Am J Orthod Dentofacial Orthop 127:403–412

    Article  PubMed  Google Scholar 

  2. Kusy RP (2002) Orthodontic biomaterials: from the past to the present. Angle Orthod 72(6):501–512

    PubMed  Google Scholar 

  3. Peltonen L (1979) Nickel sensitivity in the general population. Contact Dermatitis 5:27–29

    Article  CAS  PubMed  Google Scholar 

  4. Moffa JP (1982) Council on dental materials, instruments, and equipment biological effects of nickel-containing dental alloys. J Am Dent Assoc 104:501–505

    CAS  PubMed  Google Scholar 

  5. Huang TH, Yen CC, Kao CT (2001) Comparison of ion release from new and recycled orthodontic brackets. Am J Orthod Dentofacial Orthop 120(1):68–75

    Article  CAS  PubMed  Google Scholar 

  6. Arndt M, Bruck A, Scully T, Jager A, Bourauel C (2005) Nickel ion release from orthodontic NiTi wires under simulation of realistic in-situ conditions. J Mat Sci 40:3659–3667

    Article  CAS  Google Scholar 

  7. Fors R, Person M (2006) Nickel in dental plaque and saliva in patients with and without orthodontic appliances. Eur J Orthod 28:292–297

    Article  PubMed  Google Scholar 

  8. Kerosuo H, Moe G, Hensten-Pettersen (1997) A salivary nickel and chromium in subjects with different types of fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 111:595–598

    Article  CAS  PubMed  Google Scholar 

  9. Chojnacka K, Mikulewicz M (2010) Trace metal release from orthodontic appliances by in vivo studies: a systematic literature review. Biol Trace Elem Res. doi:10.1007/s12011-009-8576-6

    Google Scholar 

  10. Barrett RD, Bishara SE, Quinn JK (1993) Biodegradation of orthodontic appliances Part I biodegradation of nickel and chromium in vitro. Am J Orthod Dentofacial Orthop 103(1):8–14

    Article  CAS  PubMed  Google Scholar 

  11. Darabara MS, Bourithis LI, Zinelis S, Papadimitriou GD (2007) Metallurgical characterization, galvanic corrosion, and ionic release of orthodontic brackets coupled with Ni–Ti archwires. J Biomed Mater Res B Appl Biomater 81(1):126–134

    PubMed  Google Scholar 

  12. Eliades T, Pratsinis H, Kletsas D, Eliades G, Makou M (2004) Characterization and cytotoxicity of ions released from stainless steel and nickel–titanium orthodontic alloys. Am J Orthod Dentofacial Orthop 125(1):24–29

    Article  PubMed  Google Scholar 

  13. Gürsoy S, Acar AG, Seşen C (2004) Comparison of metal release from new and recycled bracket–archwire combinations. Angle Orthod 75(1):92–94

    Google Scholar 

  14. Hwang CJ, Shin JS, Cha JY (2001) Metal release from simulated fixed orthodontic appliances. Am J Orthod Dentofacial Orthop 120(4):383–391

    Article  CAS  PubMed  Google Scholar 

  15. Kuhta M, Pavlin D, Slaj M, Varga S, Lapter-Varga M, Slaj M (2009) Type of archwire and level of acidity: effects on the release of metal ions from orthodontic appliances. Angle Orthod 79(1):102–110

    Article  PubMed  Google Scholar 

  16. Park HY, Shearer TR (1983) In vitro release of nickel and chromium from simulated orthodontic appliances. Am J Orthod 84(2):156–159

    Article  CAS  PubMed  Google Scholar 

  17. Staffolani N, Damiani F, Lilli C, Guerra M, Staffolani NJ, Belcastro S, Locci P (1999) Ion release from orthodontic appliances. J Dent 27(6):449–454

    Article  CAS  PubMed  Google Scholar 

  18. Kerosuo H, Moe G, Kleven E (1995) In vitro release of nickel and chromium from different types of simulated ortodontic appliances. Angle Orthod 65(2):111–116

    CAS  PubMed  Google Scholar 

  19. Huang HH, Chiu YH, Lee TH, Wu SC, Yang HW, Su KH, Hsu CC (2003) Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials 24(20):3585–3592

    Article  CAS  PubMed  Google Scholar 

  20. Monaci F, Bargagli E, Bravi F, Rottoli P (2002) Concentrations of major elements and mercury in unstimulated human saliva. Biol Trace Elem Res 89(3):193–203

    Article  CAS  PubMed  Google Scholar 

  21. Frisk P, Danersund A, Hudecek R, Lindh U (2007) Changed clinical chemistry pattern in blood after removal of dental amalgam and other metal alloys supported by antioxidant therapy. Biol Trace Elem Res 120(1–3):163–170

    Article  CAS  PubMed  Google Scholar 

  22. Frisk P, Lindvall A, Hudecek R, Lindh U (2006) Decrease of trace elements in erythrocytes and plasma after removal of dental amalgam and other metal alloys. Biol Trace Elem Res 113(3):247–259

    Article  CAS  PubMed  Google Scholar 

  23. Hol PJ, Vamnes JS, Gjerdet NR, Eide R, Isrenn R (2002) Dental amalgam affects urinary selenium excretion. Biol Trace Elem Res 85:137–147

    Article  CAS  PubMed  Google Scholar 

  24. Ahn HS, Kim MJ, Seol HJ, Lee JH, Kim HI, Kwon YH (2006) Effect of pH and temperature on orthodontic NiTi wires immersed in acidic fluoride solution. J Biomed Mater Res B Appl Biomater 79(1):7–15

    PubMed  Google Scholar 

  25. Baumann MA, Samanek K, Ruppenthal T (1992) An in-vitro study of the interference of orthodontic banding and filling materials. Fortschr Kieferorthop 53(4):211–217

    Article  CAS  PubMed  Google Scholar 

  26. Belcastro S, Staffolani N, Guerra M (2001) Effects of organic acids on corrosion of orthodontic appliances. Minerva Stomatol 50(1–2):15–20, Italian

    CAS  PubMed  Google Scholar 

  27. Cioffi M, Gilliland D, Ceccone G, Chiesa R, Cigada A (2005) Electrochemical release testing of nickel–titanium orthodontic wires in artificial saliva using thin layer activation. Acta Biomater 1(6):717–724

    Article  CAS  PubMed  Google Scholar 

  28. David A, Lobner D (2004) In vitro cytotoxicity of orthodontic archwires in cortical cell cultures. Eur J Orthod 26(4):421–426

    Article  PubMed  Google Scholar 

  29. Eliades T, Eliades G, Brantley WA, Johnston WM (1995) Residual monomer leaching from chemically cured and visible light-cured orthodontic adhesives. Am J Orthod Dentofacial Orthop 108(3):316–321

    Article  CAS  PubMed  Google Scholar 

  30. Es-Souni M, Es-Souni M, Fischer-Brandies H (2002) On the properties of two binary NiTi shape memory alloys Effects of surface finish on the corrosion behaviour and in vitro biocompatibility. Biomaterials 23(14):2887–2894

    Article  CAS  PubMed  Google Scholar 

  31. Es-Souni M, Fischer-Brandies H, Es-Souni M (2003) On the in vitro biocompatibility of Elgiloy, a co-based alloy, compared to two titanium alloys. J Orofac Orthop 64(1):16–26

    Article  PubMed  Google Scholar 

  32. Gil FJ, Planell JA (1999) Effect of copper addition on the superelastic behavior of Ni–Ti shape memory alloys for orthodontic applications. J Biomed Mater Res 48(5):682–688

    Article  CAS  PubMed  Google Scholar 

  33. Gjerdet NR, Herø H (1987) Metal release from heat-treated orthodontic archwires. Acta Odontol Scand 45(6):409–414

    Article  CAS  PubMed  Google Scholar 

  34. Grimsdottir MR, Gjerdet NR, Hensten-Pettersen A (1992) Composition and in vitro corrosion of orthodontic appliances. Am J Orthod Dentofacial Orthop 101(6):525–532

    Article  CAS  PubMed  Google Scholar 

  35. Hanson M, Lobner D (2004) In vitro neuronal cytotoxicity of latex and nonlatex orthodontic elastics. Am J Orthod Dentofacial Orthop 126(1):65–70

    Article  PubMed  Google Scholar 

  36. Jang HS, Son WS, Park SB, Kim HI, Yong HK (2006) Effect of acetic NaF solution on the corrosion behavior of stainless steel orthodontic brackets. Dent Mater J 25(2):339–344

    Article  CAS  PubMed  Google Scholar 

  37. Jensen CS, Lisby S, Baadsgaard O, Byrialsen K, Menné T (2003) Release of nickel ions from stainless steel alloys used in dental braces and their patch test reactivity in nickel-sensitive individuals. Contact Dermatitis 48(6):300–304

    Article  CAS  PubMed  Google Scholar 

  38. Jia W, Beatty MW, Reinhardt RA, Petro TM, Cohen DM, Maze CR, Strom EA, Hoffman M (1999) Nickel release from orthodontic arch wires and cellular immune response to various nickel concentrations. J Biomed Mater Res 48(4):488–495

    Article  CAS  PubMed  Google Scholar 

  39. Kang EH, Park SB, Kim HI, Kwon YH (2008) Corrosion-related changes on Ti-based orthodontic brackets in acetic NaF solutions: surface morphology, microhardness, and element release. Dent Mater J 27(4):555–560

    Article  CAS  PubMed  Google Scholar 

  40. Kao CT, Ding SJ, Chen YC, Huang TH (2002) The anticorrosion ability of titanium nitride (TiN) plating on an orthodontic metal bracket and its biocompatibility. J Biomed Mater Res 63(6):786–792

    Article  CAS  PubMed  Google Scholar 

  41. Kao CT, Ding SJ, He H, Chou MY, Huang TH (2007) Cytotoxicity of orthodontic wire corroded in fluoride solution in vitro. Angle Orthod 77(2):349–354

    Article  PubMed  Google Scholar 

  42. Kim H, Johnson JW (1999) Corrosion of stainless steel, nickel–titanium, coated nickel–titanium, and titanium orthodontic wires. Angle Orthod 69(1):39–44

    CAS  PubMed  Google Scholar 

  43. Kwon YH, Cheon YD, Seol HJ, Lee JH, Kim HI (2004) Changes on NiTi orthodontic wired due to acidic fluoride solution. Dent Mater J 23(4):557–565

    CAS  PubMed  Google Scholar 

  44. Lippitz SJ, Staley RN, Jakobsen JR (1998) In vitro study of 24-hour and 30-day shear bond strengths of three resin-glass ionomer cements used to bond orthodontic brackets. Am J Orthod Dentofacial Orthop 113(6):620–624

    Article  CAS  PubMed  Google Scholar 

  45. Luft S, Keilig L, Jäger A, Bourauel C (2009) In-vitro evaluation of the corrosion behavior of orthodontic brackets. Orthod Craniofac Res 12(1):43–51

    Article  CAS  PubMed  Google Scholar 

  46. Mockers O, Deroze D, Camps J (2002) Cytotoxicity of orthodontic bands, brackets and archwires in vitro. Dent Mater 18(4):311–317

    Article  CAS  PubMed  Google Scholar 

  47. Nocca G, Chimenti C, Parziale V, Gambarini G, Giardina B, Lupi (2006) A In vitro comparison of the cytotoxicity of two orthodontic composite resins. Minerva Stomatol 55(5):297–305, English, Italian

    CAS  PubMed  Google Scholar 

  48. Oh KT, Kim KN (2005) Ion release and cytotoxicity of stainless steel wires. Eur J Orthod 27(6):533–540

    Article  PubMed  Google Scholar 

  49. Peitsch T, Klocke A, Kahl-Nieke B, Prymak O, Epple M (2007) The release of nickel from orthodontic NiTi wires is increased by dynamic mechanical loading but not constrained by surface nitridation. J Biomed Mater Res A 82(3):731–739

    CAS  PubMed  Google Scholar 

  50. Sfondrini MF, Cacciafesta V, Maffia E, Massironi S, Scribante A, Alberti G, Biesuz R, Klersy C (2008) Chromium release from new stainless steel, recycled and nickel-free orthodontic brackets. Angle Orthod 79(2):361–367

    Article  Google Scholar 

  51. Wang QY, Zheng YF (2008) The electrochemical behavior and surface analysis of Ti50Ni472Co28 alloy for orthodontic use. Dent Mater 24(9):1207–1211

    Article  PubMed  Google Scholar 

  52. Wheeler AW, Foley TF, Mamandras A (2002) Comparison of fluoride release protocols for in-vitro testing of 3 orthodontic adhesives. Am J Orthod Dentofacial Orthop 121(3):301–309

    Article  PubMed  Google Scholar 

  53. Young A, von der Fehr FR, Sønju T, Nordbø H (1996) Fluoride release and uptake in vitro from a composite resin and two orthodontic adhesives. Acta Odontol Scand 54(4):223–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Mikulewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikulewicz, M., Chojnacka, K. Release of Metal Ions from Orthodontic Appliances by In Vitro Studies: A Systematic Literature Review. Biol Trace Elem Res 139, 241–256 (2011). https://doi.org/10.1007/s12011-010-8670-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8670-9

Keywords

Navigation