Skip to main content
Log in

Alpha-Glucosidase Folding During Urea Denaturation: Enzyme Kinetics and Computational Prediction

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we investigated structural changes in alpha-glucosidase during urea denaturation. Alpha-glucosidase was inactivated by urea in a dose-dependent manner. The inactivation was a first-order reaction with a monophase process. Urea inhibited alpha-glucosidase in a mixed-type reaction. We found that an increase in the hydrophobic surface of this enzyme induced by urea resulted in aggregation caused by unstable folding intermediates. We also simulated the docking between alpha-glucosidase and urea. The docking simulation suggested that several residues, namely THR9, TRP14, LYS15, THR287, ALA289, ASP338, SER339, and TRP340, interact with urea. Our study provides insights into the alpha-glucosidase unfolding pathway and 3D structure of alpha-glucosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

Abbreviations

pNPG:

p-Nitrophenyl α-d-glucopyranoside

pNP:

4-Nitrophenol

SDS:

Sodium dodecyl sulfate

ANS:

1-Anilino-8-naphthalenesulfonate

References

  1. Charron, M. J., Dubin, R. A., & Michels, C. A. (1986). Molecular and Cellular Biology, 6, 3891–3899.

    CAS  Google Scholar 

  2. Kuriki, T., & Imanaka, T. (1999). Journal of Bioscience and Bioengineering, 87, 557–565. doi:10.1016/S1389-1723(99)80114-5.

    Article  CAS  Google Scholar 

  3. Noguchi, A., Nakayama, T., Hemmi, H., & Nishino, T. (2003). Biochemical and Biophysical Research Communications, 304, 684–690. doi:10.1016/S0006-291X(03)00647-8.

    Article  CAS  Google Scholar 

  4. Jespersen, H. M., MacGregor, E. A., Henrissat, B., Sierks, M. R., & Svensson, B. (1993). Journal of Protein Chemistry, 12, 791–805. doi:10.1007/BF01024938.

    Article  CAS  Google Scholar 

  5. Godbout, A., & Chiasson, J. L. (2007). Current Diabetes Reports, 7, 333–339. doi:10.1007/s11892-007-0055-x.

    Article  CAS  Google Scholar 

  6. Scheen, A. J. (2003). Drugs, 63, 933–951. doi:10.2165/00003495-200363100-00002.

    Article  CAS  Google Scholar 

  7. Wehmeier, U. F., & Piepersberg, W. (2004). Applied Microbiology and Biotechnology, 63, 613–625. doi:10.1007/s00253-003-1477-2.

    Article  CAS  Google Scholar 

  8. Moosavi-Movahedi, A. A., & Nazari, K. (1995). International Journal of Biological Macromolecules, 17, 43–47. doi:10.1016/0141-8130(95)93517-2.

    Article  CAS  Google Scholar 

  9. Zou, Q., Habermann-Rottinghaus, S. M., & Murphy, K. P. (1998). Proteins, 31, 107–115. doi:10.1002/(SICI)1097-0134(19980501)31:2<107::AID-PROT1>3.0.CO;2-J.

    Article  CAS  Google Scholar 

  10. Shemer, A., Nathansohn, N., Kaplan, B., Weiss, G., Newman, N., & Trau, H. (2000). International Journal of Dermatology, 39, 532–534. doi:10.1046/j.1365-4362.2000.00986-3.x.

    Article  CAS  Google Scholar 

  11. Hagemann, I., & Proksch, E. (1996). Acta Dermato-Venereologica, 76, 353–356.

    CAS  Google Scholar 

  12. Savica, S., Tamburic, S., Savic, M., Cekic, N., Milic, J., & Vuleta, G. (2004). International Journal of Pharmaceutics, 271, 269–280. doi:10.1016/j.ijpharm.2003.11.033.

    Article  CAS  Google Scholar 

  13. do Couto, S. G., Oliveira Mde, S., & Alonso, A. (2005). Biophysical Chemistry, 116, 23–31. doi:10.1016/j.bpc.2005.01.009.

    Article  Google Scholar 

  14. Lodén, M., Andersson, A. C., Andersson, C., Frödin, T., Oman, H., & Lindberg, M. (2001). Skin Research and Technology, 7, 209–213. doi:10.1034/j.1600-0846.2001.070401.x.

    Article  Google Scholar 

  15. Peck, K. D., Ghanem, A. H., & Higuchi, W. I. (1995). Journal of Pharmaceutical Sciences, 84, 975–982. doi:10.1002/jps.2600840813.

    Article  CAS  Google Scholar 

  16. Hahn, H. S., Park, Y. D., Lee, J. R., Park, K. H., Kim, T. J., Yang, J. M., et al. (2003). Journal of Protein Chemistry, 22, 563–570. doi:10.1023/B:JOPC.0000005506.98513.43.

    Article  CAS  Google Scholar 

  17. Zou, H. C., Yu, Z. H., Wang, Y. J., Yang, J. M., Zhou, H. M., Meng, F. G., et al. (2007). Journal of Biomolecular Structure & Dynamics, 24, 359–368.

    CAS  Google Scholar 

  18. Zou, H. C., Lü, Z. R., Wang, Y. J., Zhang, Y. M., Zou, F., & Park, Y. D. (2009). Applied Biochemistry and Biotechnology, 152, 15–28. doi:10.1007/s12010-008-8282-4.

    Article  CAS  Google Scholar 

  19. John, B., & Sali, A. (2003). Nucleic Acids Research, 31, 3982–3992. doi:10.1093/nar/gkg460.

    Article  CAS  Google Scholar 

  20. Rodriguez, R., Chinea, G., Lopez, N., Pons, T., & Vriend, G. (1998). Bioinformatics (Oxford, England), 14, 523–528. doi:10.1093/bioinformatics/14.6.523.

    Article  CAS  Google Scholar 

  21. Watanabe, K., Hata, Y., Kizaki, H., Katsube, Y., & Suzuki, Y. (1997). Journal of Molecular Biology, 269, 142–153. doi:10.1006/jmbi.1997.1018.

    Article  CAS  Google Scholar 

  22. Bryson, K., McGuffin, L. J., Marsden, R. L., Ward, J. J., Sodhi, J. S., & Jones, D. T. (2005). Nucleic Acids Research, 33, W36–W38. doi:10.1093/nar/gki410.

    Article  CAS  Google Scholar 

  23. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., et al. (1998). Journal of Computational Chemistry, 19, 1639–1662. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.

    Article  CAS  Google Scholar 

  24. Moustakas, D. T., Lang, P. T., Pegg, S., Pettersen, E., Kuntz, I. D., Brooijmans, N., et al. (2006). Journal of Computer-Aided Molecular Design, 20, 601–619. doi:10.1007/s10822-006-9060-4.

    Article  CAS  Google Scholar 

  25. Rarey, M., Kramer, B., Lengauer, T., & Klebe, G. (1996). Journal of Molecular Biology, 261, 470–489. doi:10.1006/jmbi.1996.0477.

    Article  CAS  Google Scholar 

  26. Moitessier, N., Englebienne, P., Lee, D., Lawandi, J., & Corbeil, C. R. (2008). British Journal of Pharmacology, 153, S7–S26. doi:10.1038/sj.bjp.0707515.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Fei Zou was supported by a grant from the National Basic Research Program of China (no. 2006CB504100). Dr. Jong Bhak was supported by a grant from the KRIBB Research Initiative Program of Korea. Dr. Yong-Doo Park was supported by fund from the Science and Technology Planning Project of Jiaxing (no. 2008AZ1024), Zhejiang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zou.

Additional information

Xue-Qiang Wu and Jun Wang have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XQ., Wang, J., Lü, ZR. et al. Alpha-Glucosidase Folding During Urea Denaturation: Enzyme Kinetics and Computational Prediction. Appl Biochem Biotechnol 160, 1341–1355 (2010). https://doi.org/10.1007/s12010-009-8636-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8636-6

Keywords

Navigation