Skip to main content
Log in

Butanol Tolerance in a Selection of Microorganisms

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Butanol tolerance is a critical factor affecting the ability of microorganisms to generate economically viable quantities of butanol. Current Clostridium strains are unable to tolerate greater than 2% 1-butanol thus membrane or gas stripping technologies to actively remove butanol during fermentation are advantageous. To evaluate the potential of alternative hosts for butanol production, we screened 24 different microorganisms for their tolerance to butanol. We found that in general, a barrier to growth exists between 1% and 2% butanol and few microorganisms can tolerate 2% butanol. Strains of Escherichia coli, Zymomonas mobilis, and non-Saccharomyces yeasts were unable to surmount the 2% butanol growth barrier. Several strains of Saccharomyces cerevisiae exhibit limited growth in 2% butanol, while two strains of Lactobacillus were able to tolerate and grow in up to 3% butanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schwarz, W. H., & Gapes, R. (2006). BioWorld Europe, 1, 16–19.

    Google Scholar 

  2. Zverlov, V. V., et al. (2006). Applied Microbiology and Biotechnology, 71, 587–597. doi:10.1007/s00253-006-0445-z.

    Article  CAS  Google Scholar 

  3. Qureshi, N., & Blaschek, H. P. (2001). Journal of Industrial Microbiology & Biotechnology, 27, 292–297. doi:10.1038/sj.jim.7000123.

    Article  CAS  Google Scholar 

  4. Tummala, S. B., Junne, S. G., & Papoutsakis, E. T. (2003). Journal of Bacteriology, 185(12), 3644–3653. doi:10.1128/JB.185.12.3644-3653.2003.

    Article  CAS  Google Scholar 

  5. Qureshi, N., Saha, B. C., & Cotta, M. A. (2007). Bioprocess and Biosystems Engineering, 30, 419–427. doi:10.1007/s00449-007-0137-9.

    Article  CAS  Google Scholar 

  6. Baer, S. H., Blaschek, H. P., & Smith, T. L. (1987). Applied and Environmental Microbiology, 53(12), 2854–2861.

    CAS  Google Scholar 

  7. Borden, J. R., & Papoutsakis, E. T. (2007). Applied and Environmental Microbiology, 73(9), 3061–3068. doi:10.1128/AEM.02296-06.

    Article  CAS  Google Scholar 

  8. Vollherbst-Schneck, K., Sands, J. A., & Montenecourt, B. S. (1984). Applied and Environmental Microbiology, 47(1), 193–194.

    CAS  Google Scholar 

  9. Lin, Y. L., & Blaschek, H. P. (1983). Applied and Environmental Microbiology, 45(3), 966–973.

    CAS  Google Scholar 

  10. Soucaille, P., et al. (1987). Current Microbiology, 14, 295–299. doi:10.1007/BF01568139.

    Article  CAS  Google Scholar 

  11. Scotcher, M. C., et al. (2003). Journal of Industrial Microbiology & Biotechnology, 30, 414–420. doi:10.1007/s10295-003-0057-x.

    Article  CAS  Google Scholar 

  12. Scotcher, M. C., Rudolph, F. B., & Bennett, G. N. (2005). Applied and Environmental Microbiology, 71(4), 1987–1995. doi:10.1128/AEM.71.4.1987-1995.2005.

    Article  CAS  Google Scholar 

  13. Thormann, K., et al. (2002). Journal of Bacteriology, 184(7), 1966–1973. doi:10.1128/JB.184.7.1966-1973.2002.

    Article  CAS  Google Scholar 

  14. Zhao, Y., et al. (2005). Applied and Environmental Microbiology, 71(1), 530–537. doi:10.1128/AEM.71.1.530-537.2005.

    Article  CAS  Google Scholar 

  15. Durre, P. (1998). Applied Microbiology and Biotechnology, 49, 639–648. doi:10.1007/s002530051226.

    Article  CAS  Google Scholar 

  16. Atsumi, S., et al. . Metabolic engineering of Escherichia coli for 1-butanol production. Metab. Eng. (2008), doi:10.1016/j.ymben.2007.08.003.

  17. Atsumi, S., Hanai, T., & Liao, J. C. (2008). Nature, 451(3), 87–90.

    Google Scholar 

  18. Couto, J. A., Pina, C., & Hogg, T. (1997). Biotechnology Letters, 19(5), 487–490. doi:10.1023/A:1018312714761.

    Article  CAS  Google Scholar 

  19. Antoce, O. A., et al. (1997). American Journal of Enology and Viticulture, 48(4), 413–422.

    CAS  Google Scholar 

  20. Luong, J. H. T. (1986). Biotechnology and Bioengineering, 29, 242–248. doi:10.1002/bit.260290215.

    Article  Google Scholar 

  21. Zhang, M., et al. (1995). Applied Biochemistry and Biotechnology, 51/52, 527–536. doi:10.1007/BF02933454.

    Article  CAS  Google Scholar 

  22. Desmond, C., et al. (2004). Applied and Environmental Microbiology, 70(10), 5929–5936. doi:10.1128/AEM.70.10.5929-5936.2004.

    Article  CAS  Google Scholar 

  23. Fiocco, D., et al. (2007). Applied Microbiology and Biotechnology, 77, 909–915. doi:10.1007/s00253-007-1228-x.

    Article  CAS  Google Scholar 

  24. Matsumoto, M., Mochiduki, K., & Kondo, K. (2004). Journal of Bioscience and Bioengineering, 98(5), 344–347.

    CAS  Google Scholar 

  25. Isken, S., & De Bont, J. A. (1998). Extremophiles, 2, 229–238. doi:10.1007/s007920050065.

    Article  CAS  Google Scholar 

  26. Jain, M. K., et al. (1978). Biochimica et Biophysica Acta, 509, 1–8. doi:10.1016/0005-2736(78)90002-0.

    Article  CAS  Google Scholar 

  27. Moreira, A. R., Ulmer, D. C., & Linden, J. C. (1981). Biotechnology and Bioengineering Symposium, 11, 567–579.

    CAS  Google Scholar 

  28. Bowles, L. K., & Ellefson, W. L. (1985). Applied and Environmental Microbiology, 50, 1165–1170.

    CAS  Google Scholar 

  29. Ingram, L. O. (1976). Journal of Bacteriology, 125, 670–678.

    CAS  Google Scholar 

  30. Ashe, M. P., et al. (2001). The EMBO Journal, 20(22), 6464–6474. doi:10.1093/emboj/20.22.6464.

    Article  CAS  Google Scholar 

  31. Ramos, J. L., et al. (2002). Annual Review of Microbiology, 56, 743–768.

    Article  CAS  Google Scholar 

  32. Weber, F. J., & de Bont, J. A. (1996). Biochimica et Biophysica Acta, 1286, 225–245.

    CAS  Google Scholar 

  33. Kabelitz, N., Santos, P. M., & Heipieper, H. J. (2003). FEMS Microbiology Letters, 220, 223–227. doi:10.1016/S0378-1097(03)00103-4.

    Article  CAS  Google Scholar 

  34. Isken, S., & Heipieper, H. J. (2002). Toxicity of organic solvents to microorganisms. In G. Bitton (Ed.), encyclopedia of environmental microbiology (vol. 6, (pp. 3147–3155)). New York: Wiley.

    Google Scholar 

  35. Kadam, K. L., & Schmidt, S. L. (1997). Applied Microbiology and Biotechnology, 48, 709–713. doi:10.1007/s002530051120.

    Article  CAS  Google Scholar 

  36. Barnett, J., Payne, R., & Yarrow, D. (2000). Yeasts: Characteristics and identification. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  37. Kruse, B., & Schugerl, K. (1996). Process Biochemistry, 31(4), 389–407. doi:10.1016/0032-9592(95)00070-4.

    Article  CAS  Google Scholar 

  38. Ranatunga, T. D., et al. (1996). Biotechnology Letters, 19(11), 1125–1127. doi:10.1023/A:1018400912828.

    Article  Google Scholar 

  39. Slapack, G. E., Russell, I., & STewart, G. G. (1987). Thermophilic microbes in ethanol production. Boca Raton, FL: CRC.

    Google Scholar 

  40. Ziffer, J., & Iosif, M. I. (1982). Biotechnology Letters, 4(12), 809–814. doi:10.1007/BF00131158.

    Article  CAS  Google Scholar 

  41. Yamada, K., Ito, T., & Kobayashi, T. (1951). In H. Kyokai-Shi (Ed.), Selection of yeast by reuse, method., 9 pp. 176–179. Tokyo: Tokyo University.

    Google Scholar 

  42. Zayed, G. (1997). Journal of Industrial Microbiology & Biotechnology, 19, 39–42. doi:10.1038/sj.jim.2900413.

    Article  CAS  Google Scholar 

  43. Kunduru, M. R., & Pometto, A. (1996). Journal of Industrial Microbiology & Biotechnology, 16(4), 249–256.

    CAS  Google Scholar 

  44. Bowman, L., & Geiger, E. (1984). Biotechnology and Bioengineering, 26, 1492–1497. doi:10.1002/bit.260261214.

    Article  CAS  Google Scholar 

  45. Stevnsborg, N., & Lawford, H. G. (1986). Applied Microbiology and Biotechnology, 25(2), 106–115.

    CAS  Google Scholar 

  46. Mohagheghi, A., et al. (2004). Biotechnology Letters, 26, 321–325. doi:10.1023/B:BILE.0000015451.96737.96.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the National Renewable Energy Laboratory’s Laboratory Directed Research and Development program for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric P. Knoshaug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoshaug, E.P., Zhang, M. Butanol Tolerance in a Selection of Microorganisms. Appl Biochem Biotechnol 153, 13–20 (2009). https://doi.org/10.1007/s12010-008-8460-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8460-4

Keywords

Navigation