Skip to main content
Log in

Remediation of Textile Dye Waste Water Using a White-Rot Fungus Bjerkandera adusta Through Solid-state Fermentation (SSF)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A strict screening strategy for microorganism selection was followed employing a number of white-rot fungi for the bioremediation of textile effluent, which was generated from one Ireland-based American textile industry. Finally, one fungus Bjerkandera adusta has been investigated in depth for its ability to simultaneously degrade and enrich the nutritional quality of highly coloured textile effluent-adsorbed barley husks through solid-state fermentation (SSF). Certain important parameters such as media requirements, moisture content, protein/biomass production and enzyme activities were examined in detail. A previously optimised method of dye desorption was employed to measure the extent of dye remediation through effluent decolorisation achieved as a result of fungal activity in SSF. B. adusta was capable of decolourising a considerable concentration of the synthetic dye effluent (up to 53%) with a moisture content of 80–85%. Protein enrichment of the fermented mass was achieved to the extent of 229 g/kg dry weight initial substrate used. Lignin peroxidase and laccase were found to be the two main enzymes produced during SSF of the dye-adsorbed lignocellulosic waste residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Bioresource Technology, 58, 217–227. DOI 10.1016/S0960-8524(96)00113-7.

    Article  CAS  Google Scholar 

  2. Kirby, N. (1999). PhD Thesis, University of Ulster, Coleraine, Northern Ireland.

  3. Paszczynski, A., & Crawford, R. C. (1995). Biotechnology Progress, 11, 368–379. DOI 10.1021/bp00034a002.

    Article  CAS  Google Scholar 

  4. Nigam, P., Armour, G., Banat, I. M., Singh, D., & Marchant, R. (2000). Bioresource Technology, 72, 219–226. DOI 10.1016/S0960-8524(99)00123-6.

    Article  CAS  Google Scholar 

  5. Nigam, P., & Singh, D. (1994). Journal of Basic Microbiology, 34, 405–423. DOI 10.1002/jobm.3620340607.

    Article  CAS  Google Scholar 

  6. Balakrishnan, K., & Pandey, A. (1996). Journal of Scientific and Industrial Research, 55, 365–372.

    CAS  Google Scholar 

  7. Durand, A., Almanza, S., Renaud, R., & Maratray, J. (1997). Agro Food Industry Hi-tech, 8, 39–42.

    CAS  Google Scholar 

  8. Mitchell, D. A., & Lonsane, B. K. (1992). Solid Substrate Cultivation. In H.W. Doelle, D. A. Mitchell, & C.E. Rolz (Eds.), Elsevier, Essex, England.

  9. Bhumiratana, A., Flegel, T., Glinsukon, T., & Somporan, W. (1980). Applied and Environmental Microbiology, 39, 425–430.

    Google Scholar 

  10. Hesseltine, C. W. (1983). Annual Review of Microbiology, 37, 575–601. DOI 10.1146/annurev.mi.37.100183.003043.

    Article  CAS  Google Scholar 

  11. GumbinaSaid, E. (1996). Journal of Scientific and Industrial Research, 55, 431–438.

    Google Scholar 

  12. Nigam, P., & Singh, D. (1996a). Journal of Scientific and Industrial Research, 55, 373–380.

    CAS  Google Scholar 

  13. Sandhu, D. K., & Joshi, V. K. (1997). Journal of Scientific and Industrial Research, 56, 86–90.

    CAS  Google Scholar 

  14. Hinman, N. D., Schell, D. J., Riley, C. J., Bergeron, P. W., & Walter, P. J. (1992). Applied biochemistry and biotechnology, 34–5, 639–649.

    Article  Google Scholar 

  15. Ingram, L. O., Aldrich, H. C., Borges, A. C. C., Causey, T. B., Martinez-Morales, F., Saleh, A., et al. (1999). Bioresource Technology, 15, 855–866. DOI 10.1021/bp9901062.

    CAS  Google Scholar 

  16. Lapadatescu, C., & Bonnarme, P. (1999). Biotechnology Letters, 21, 763–769. DOI 10.1023/A:1005527205998.

    Article  CAS  Google Scholar 

  17. Gombert, A. K., Pinto, A. L., Castilho, L. R., & Freire, D. M. G. (1999). Proceedings of Biochemistry, 35, 85–90. DOI 10.1016/S0032-9592(99)00036-9.

    Article  CAS  Google Scholar 

  18. Nigam, P., & Singh, D. (1996b). Journal of Scientific and Industrial Research, 55, 457–467.

    CAS  Google Scholar 

  19. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Bioresource Technology, 77, 247–255. DOI 10.1016/S0960-8524(00)00080-8.

    Article  CAS  Google Scholar 

  20. Makkar, R. S., & Cameotra, S. S. (1999). Journal of Surfactants and Detergents, 2, 237–241. DOI 10.1007/s11743-999-0078-3.

    Article  CAS  Google Scholar 

  21. Pandey, A., Soccol, C. R., & Mithchell, D. (2000). Process Biochemistry, 35, 1153–1169.

    Article  CAS  Google Scholar 

  22. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Bioresource Technology, 74, 17–24. DOI 10.1016/S0960-8524(99)00160-1.

    Article  CAS  Google Scholar 

  23. Robinson, T., Chandran, B., & Nigam, P. (2002a). Environment International, 28, 29–33. DOI 10.1016/S0160-4120(01)00131-3.

    Article  CAS  Google Scholar 

  24. Robinson, T., Chandran, B., & Nigam, P. (2002b). Bioresource Technology, 84, 299–301. DOI 10.1016/S0960-8524(02)00039-1.

    Article  CAS  Google Scholar 

  25. Robinson, T., Chandran, B., & Nigam, P. (2002c). Applied Biochemistry and Biotechnology, 7, 810–813.

    Google Scholar 

  26. Robinson, T., Chandran, B., & Nigam, P. (2002d). Enzyme and Microbial Technology, 29, 575–579. DOI 10.1016/S0141-0229(01)00430-6.

    Article  Google Scholar 

  27. Gupte, A., & Madamwar, D. (1996). Applied biochemistry and biotechnology, 62, 267–273. DOI 10.1007/BF02788002.

    Article  Google Scholar 

  28. Nigam, P. (1994). Process Biochemistry, 29, 337–342. DOI 10.1016/0032-9592(94)87002-0.

    Article  CAS  Google Scholar 

  29. Brand, D., Pandey, A., Roussos, S., & Soccol, C. R. (2000). Enzyme and Microbial Technology, 27, 127–133. DOI 10.1016/S0141-0229(00)00186-1.

    Article  CAS  Google Scholar 

  30. Bhatt, M., Patel, M., Rawal, B., Novotny, C., Molitoris, H. P., & Sasek, V. (2000). World Journal of Microbiology & Biotechnology, 16, 195–198. DOI 10.1023/A:1008937503675.

    Article  CAS  Google Scholar 

  31. Herbert, D. P., Phipps P. J, & Strange, R. E. (1971). Methods in Microbiology. In J. R. Norris, & D. W. Ribbons (Eds.). London: Academic Press, pp. 209–344.

  32. Bollag, J. M., Chen, C. M., Sarkar, J. M., & Loll, M. J. (1987). Soil Biology & Biochemistry, 19, 61–67. DOI 10.1016/0038-0717(87)90126-X.

    Article  CAS  Google Scholar 

  33. Tien, M., & Kirk, T. K. (1988). Methods in Enzymology, 161, 238–249. DOI 10.1016/0076-6879(88)61025-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Singh Nigam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, T., Nigam, P.S. Remediation of Textile Dye Waste Water Using a White-Rot Fungus Bjerkandera adusta Through Solid-state Fermentation (SSF). Appl Biochem Biotechnol 151, 618–628 (2008). https://doi.org/10.1007/s12010-008-8272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8272-6

Keywords

Navigation