Skip to main content
Log in

Novel Isolates for Biological Detoxification of Lignocellulosic Hydrolysate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, two new strians, Issatchenkia occidentalis (Lj-3, CCTCC M 2006097) and Issatchenkia orienalis (S-7, CCTCC M 2006098), isolated from different environments on solid media, were used in the detoxification process of the hemicellulosic hydrolysate of sugarcane bagasse. High-pressure liquid chromatography elution curve of UV-absorption compounds represented by acetic acid, furfural, and guaiacol (toxic compounds found in the hemicellulosic hydrolysate) showed that several chromatographic peaks were evidently diminished for the case of detoxified hydrolysate with isolate strains compared to the high peaks resulted for no detoxified hydrolysate. It was clear that these inhibitors were degraded by the two new isolates during their cultivation process. Fermentation results for the biodetoxified hydrolysate showed an increase in xylitol productivity (Q p) by 1.97 and 1.95 times (2.03 and 2.01 g l−1 h−1) and in xylitol yield (Y p) by 1.72 and 1.65 times (0.93 and 0.89 g xylitol per gram xylose) for hydrolysate treated with S-7 and Lj-3, respectively, in comparison with no detoxified hydrolysate (1.03 g l−1 h−1 and 0.54 g xylitol per gram xylose). This present work demonstrated the importance of Issatchenkia yeast in providing an effective biological detoxification approach to remove inhibitors and improve hydrolysate fermentability, leading to a high xylitol productivity and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sarrouh, B. F., Santos, D. T., & Silva, S. S. (2007). BTJ, 2(6), 759–763.

    CAS  Google Scholar 

  2. Silva, S. S., Converti, A., Zilli, M., Sene, L., & Felipe, M. G. A. (2001). Applied Biochemistry and Biotechnology, 57, 738–743.

    Google Scholar 

  3. Silva, S. S., & Afschar, A. S. (1994). Bioprocess Engineering, 11, 129–34.

    Article  Google Scholar 

  4. Silva, S. S., Santos, J. C., Carvalho, W., Aracava, K. K., & Vitolo, M. (2003). Process Biochemistry, 38(6), 903–907.

    Article  CAS  Google Scholar 

  5. Hsu, T. (1996) Handbook on bioethanol production and utilization. In: Wyman CE (Ed) Washington, DC: Taylor and Francis, pp. 179–212

  6. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  7. Parajó, J. C., Dominguez, H., & Dominguez, J. M. (1998). Bioresource Technology, 66, 25–40.

    Article  Google Scholar 

  8. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Bioresource Technology, 74, 25–33.

    Article  CAS  Google Scholar 

  9. Berson, R. E., Young, J. S., & Kamer, S. N. (2005). Applied Biochemistry and Biotechnology, 123, 923–934.

    Article  Google Scholar 

  10. Agblevor, F. A., Fu, J., & Hames, B. (2004). Applied Biochemistry and Biotechnology, 119, 97–120.

    Article  CAS  Google Scholar 

  11. Carvalhero, F., Duarte, L. C., & Lopes, S. (2005). Process Biochemistry, 40, 1215–1223.

    Article  CAS  Google Scholar 

  12. Mussatto, S. I., & Roberto, I. C. (2004). Bioresource Technology, 93, 1–10.

    Article  CAS  Google Scholar 

  13. Carvalho, G. B. M., Mussatto, S. I., & Cândido, E. J. (2006). Journal of Chemical Technology and Biotechnology, 81, 152–157.

    Article  CAS  Google Scholar 

  14. López, M. J., Nichols, N. N., Deien, B. B., Moreno, J., & Bothast, R. J. (2004). Applied Microbiology and Biotechnology, 64, 125–131.

    Article  CAS  Google Scholar 

  15. Peterson, S. W., & Kurtzman, C. P. (1991). Systematic and Applied Microbiology, 14, 124–129.

    CAS  Google Scholar 

  16. Raeder, U., & Broda, P. (1985). Applied Microbiology, 1, 17–20.

    Article  CAS  Google Scholar 

  17. Guadet, J., Julien, J., Lafey, J. F., & Brygoo, Y. (1989). Molecular Biology and Evolution, 6, 227–242.

    CAS  Google Scholar 

  18. Kurtzman, C. P., & Robnett, C. J. (1997). Journal of Clinical Microbiology, 35, 1216–1223.

    CAS  Google Scholar 

  19. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.

    Article  CAS  Google Scholar 

  20. Barnett, J. A., Payne, R. W., Yarrow, D. (1990) Yeasts: characteristics and identification. (pp. 683–684) Cambridge: Cambridge University Press.

  21. Luo, C., Brink, D. L., & Blanch, H. W. (2002). Biomass Bioenergy, 22, 125–130.

    Article  CAS  Google Scholar 

  22. Jönsson, L. J., Palmqvist, E., Nilvebrant, N. O., & Hahn-Hägerdal, B. (1998). Applied Microbiology and Biotechnology, 49, 691–697.

    Article  Google Scholar 

  23. Rodrigues, R. C. L. B., Felipe, M. G. A., Almeida e Silva, J. B., Vitolo, M., & Gómez, P. V. (2001). Brazilian Journal of Chemical Engineering, 18(3), 299–311.

    Article  CAS  Google Scholar 

  24. Silva, C. J. S. M., & Roberto, I. C. (2001). Letters in Applied Microbiology, 32, 248–252.

    Article  CAS  Google Scholar 

  25. Nichols, N. N., Dien, B. S., & Guisado, G. M. (2005). Applied Biochemistry and Biotechnology, 124, 379–390.

    Article  Google Scholar 

  26. Patrícia, A., Ramalho, M., & Helena, C. (2004). Applied and Environmental Microbiology, 70(4), 2279–2288.

    Article  CAS  Google Scholar 

  27. Tamaki, H., Kumagai, H., & Shimada, Y. (1991). Agricultural and Biological Chemistry, 55(4), 951–956.

    CAS  Google Scholar 

  28. Arroyo, L. F. N., Duran, Q. M. C., & Garrido, F. A. (2006). Journal of Food Protection, 69(6), 1354–1364.

    Google Scholar 

  29. Lee, J. H., Lim, Y. B., & Park, K. M. (2003). Asian–Australasian Journal of Animal Sciences, 16(7), 1011–1014.

    Google Scholar 

  30. Middelhoven, W. J. (2001) Methods in biotechnology. In: Spencer, J. F. T., Spencer, R. (Eds.) Food microbiology protocols (pp. 209–224). New York: Humana.

  31. Costas, M, Deive, F. J., & Longo, M. A. (2004). Process Biochemistry, 39, 2109–2114.

    Article  CAS  Google Scholar 

  32. Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., & Ingram, L. O. (2001). Biotechnology Progress, 17, 287–293.

    Article  CAS  Google Scholar 

  33. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Nucleic Acids Research, 25(17), 3389–3402.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation of China (No.30450007)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Hou-Rui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou-Rui, Z., Xiang-Xiang, Q., Silva, S.S. et al. Novel Isolates for Biological Detoxification of Lignocellulosic Hydrolysate. Appl Biochem Biotechnol 152, 199–212 (2009). https://doi.org/10.1007/s12010-008-8249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8249-5

Keywords

Navigation