Skip to main content
Log in

Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Our previous research has shown that saline Creeping Wild Ryegrass (CWR), Leymus triticoides, has a great potential to be used for bioethanol production because of its high fermentable sugar yield, up to 85% cellulose conversion of pretreated CWR. However, the high cost of enzyme is still one of the obstacles making large-scale lignocellulosic bioethanol production economically difficult. It is desirable to use reduced enzyme loading to produce fermentable sugars with high yield and low cost. To reduce the enzyme loading, the effect of addition of non-ionic surfactants and non-catalytic protein on the enzymatic hydrolysis of pretreated CWR was investigated in this study. Tween 20, Tween 80, and bovine serum albumin (BSA) were used as additives to improve the enzymatic hydrolysis of dilute sulfuric-acid-pretreated CWR. Under the loading of 0.1 g additives/g dry solid, Tween 20 was the most effective additive, followed by Tween 80 and BSA. With the addition of Tween 20 mixed with cellulase loading of 15 FPU/g cellulose, the cellulose conversion increased 14% (from 75 to 89%), which was similar to that with cellulase loading of 30 FPU/g cellulose and without additive addition. The results of cellulase and BSA adsorption on the Avicel PH101, pretreated CWR, and lignaceous residue of pretreated CWR support the theory that the primary mechanism behind the additives is prevention of non-productive adsorption of enzymes on lignaceous material of pretreated CWR. The addition of additives could be a promising technology to improve the enzymatic hydrolysis by reducing the enzyme activity loss caused by non-productive adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CWR:

Creeping Wild Ryegrass, Leymus triticoides

BSA:

bovine serum albumin

FPU:

cellulase activity

CBU:

β-glucosidase activity

Tween 80:

poly(oxyethylene)20-sorbitan-monooleate

Tween 20:

poly(oxyethylene)20-sorbitan-monolaurate

SSF:

simultaneous saccharification and fermentation

DI water:

deionized water

HPLC:

high-performance liquid chromatography

References

  1. Sheehan, J., & Himmel, M. (1999). Biotechnology Progress, 15, 817–827.

    Article  CAS  Google Scholar 

  2. Alkasrawi, M., Erriksson, T., Borjesson, J., Wingren, A., Galbe, M., & Zacchi, G. (2003). Enzyme and Microbial Technology, 33, 71–78.

    Article  CAS  Google Scholar 

  3. Kristensen, J. B., Borjesson, J. Bruun, M., Tjerneld, F., & Jorgensen, H. (2007). Enzyme and Microbial Technology, 40, 888–895.

    Article  CAS  Google Scholar 

  4. Gregg, D. J., & Saddler, J. N. (1996). Biotechnology and Bioengineering, 51, 375–383.

    Article  CAS  Google Scholar 

  5. Himmel, M. E., Ruth, M. F., & Wyman, C. E. (1999). Current Opinion in Biotechnology, 10, 358–364.

    Article  CAS  Google Scholar 

  6. Wooley, R., Ruth, M., Glassner, D., & Sheehan, J. (1999). Biotechnology Progress, 15, 794–803.

    Article  CAS  Google Scholar 

  7. Eriksson, T., Borjesson, J., & Tjerneld, F. (2002). Enzyme and Microbial Technology, 31, 353–364.

    Article  CAS  Google Scholar 

  8. Borjesson, J., Peterson, R., & Tjernel, F. (2007). Enzyme and Microbial Technology, 40, 754–762.

    Article  CAS  Google Scholar 

  9. Mooney, C., Mansfield, S., Touhy, M., & Saddler, J. (1998). Bioresource Technology, 64, 113–119.

    Article  CAS  Google Scholar 

  10. Valjamae, P., Sild, V., Nutt, A., Pettersson, G., & Johansson, G. (1999). European Journal of Biochemistry, 266, 327–334.

    Article  CAS  Google Scholar 

  11. Eriksson, T., Karlsson, J., & Tjerneld, F. (2002). Applied Biochemistry and Biotechnology, 101, 41–60.

    Article  CAS  Google Scholar 

  12. Sutcliffe, R., & Saddler, J. N. (1986). Biotechnology and Bioengineering Symposium, 17, 749–762.

    CAS  Google Scholar 

  13. Ooshima, H., Burns, D. S., & Converse, A. O. (1990). Biotechnology and Bioengineering, 36, 446–452.

    Article  CAS  Google Scholar 

  14. Lu, Y. P., Yang, B., Gregg, D., Saddler, J. N., & Mansfield, S. D. (2002). Applied Biochemistry and Biotechnology, 98, 641–654.

    Article  Google Scholar 

  15. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Journal of Biotechnology, 107, 65–72.

    Article  CAS  Google Scholar 

  16. Berlin, A., Gilkes, N., Kurabi, A., Bura, R., Tu, M. B., Kilburn, D., et al. (2005). Applied Biochemistry and Biotechnology, 121–124, 163–170.

    Article  Google Scholar 

  17. Yang, B., & Wyman, C. E. (2006). Biotechnology and Bioengineering, 94, 611–617.

    Article  CAS  Google Scholar 

  18. Sewalt, V. J. H., Glasser, W. G., & Beauchemin, K. A. (1997). Journal of Agricultural and Food Chemistry, 45, 1823–1828.

    Article  CAS  Google Scholar 

  19. Kim, S., & Holtzapple, M. T. (2006). Bioresource Technology, 97, 583–591.

    Article  CAS  Google Scholar 

  20. Castanon, M., & Wilke, C. R. (1981). Biotechnology and Bioengineering, 23, 1365–1372.

    Article  CAS  Google Scholar 

  21. Ballesteros, I., Oliva, J. M., Carrasco, J., Cabanas, A., Navarro, A. A., & Ballesteros, M. (1998). Applied Biochemistry and Biotechnology, 70–72, 369–381.

    Article  Google Scholar 

  22. Helle, S. S., Duff, S. J. B., & Cooper, D. G. (1993). Biotechnology and Bioengineering, 42, 611–617.

    Article  CAS  Google Scholar 

  23. Kaar, W. E., & Holtzapple, M. T. (1998). Biotechnology and Bioengineering, 59, 419–427.

    Article  CAS  Google Scholar 

  24. Wu, J., & Ju, L.-K. (1998). Biotechnology Progress, 14, 649–652.

    Article  CAS  Google Scholar 

  25. Ooshima, H., Sakata, M., & Harano, Y. (1986). Biotechnology and Bioengineering, 28, 1727–1734.

    Article  CAS  Google Scholar 

  26. Tanaka, M., Takenawa, S., Matsuno, R., & Kamikubo, T. (1978). Journal of Fermentation Technology, 56, 108–113.

    CAS  Google Scholar 

  27. Kawamoto, H., Nakatsubo, F., & Murakami, K. (1992). Mokuzai Gakkaishi, 38, 81–84.

    CAS  Google Scholar 

  28. Haynes, H. A., & Norde, W. (1994). Colloids and Surfaces B, 2, 517–566.

    Article  CAS  Google Scholar 

  29. Reese, E. T., & Maguire, A. (1969). Applied Microbiology, 17, 242–245.

    CAS  Google Scholar 

  30. Reese, E. T., & Maguire, A. (1971). Developments in Industrial Microbiology, 12, 212–224.

    Google Scholar 

  31. Pardo, A. G. (1996). Current Microbiology, 33, 275–278.

    Article  CAS  Google Scholar 

  32. Zheng, Y., Pan, Z., Zhang, R., Labvitch, J., Wang, D., Teter, S., et al. (2007). Applied Biochemistry and Biotechnology, 136–140, 423–435.

    Article  Google Scholar 

  33. Desai, S. G., & Converse, A. O. (1997). Biotechnology and Bioengineering, 56, 650–655.

    Article  CAS  Google Scholar 

  34. Medve, J., Karlsson, J., Lee, D., & Tjerneld, F. (1998). Biotechnology and Bioengineering, 59, 621–634.

    Article  CAS  Google Scholar 

  35. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  36. Moloney, A., & Coughlan, M. P. (1983). Biotechnology and Bioengineering, 25, 271–280.

    Article  CAS  Google Scholar 

  37. Ooshima, H., Sakata, M., & Harano, Y. (1983). Biotechnology and Bioengineering, 25, 3103–3114.

    Article  CAS  Google Scholar 

  38. Mizutani, C., Sethumadhavan, K., Howley, P., & Bertoniere, N. (2002). Cellulose, 9, 83–89.

    Article  CAS  Google Scholar 

  39. Park, J. W., Takahata, Y., Kajiuchi, T., & Akehata, T. (1992). Biotechnology and Bioengineering, 39, 117–120.

    Article  CAS  Google Scholar 

  40. Borjesson, J., Engqvist, M., Sipos, B., & Tjerneld, F. (2007). Enzyme and Microbial Technology, 41, 186–195.

    Article  CAS  Google Scholar 

  41. Kim, M. H., Lee, S. B., & Ryu, D. D. Y. (1982). Enzyme and Microbial Technology, 4, 99–103.

    Article  CAS  Google Scholar 

  42. Herskovitz, T. T., & Jaillet, H. (1969). Science, 163, 282–285.

    Article  Google Scholar 

  43. Badley, R. A., Carruthers, L., & Phillips, M. C. (1977). Biochimica et Biophysica Acta, 495, 110–118.

    CAS  Google Scholar 

  44. Reese, E. T., & Robbins, F. M. (1981). Journal of Colloid and Interface Science, 83, 393–400.

    Article  CAS  Google Scholar 

  45. Kurakake, M., Ooshima, H., Kato, J., & Harano, Y. (1994). Bioresource Technology, 49, 247–251.

    Article  CAS  Google Scholar 

  46. Kraulis, P. J., Clore, G. M., Nilges, M., Jones, T. A., Pettersson, G., Knowles, J. K. C., et al. (1989). Biochemistry, 28, 7241–7257.

    Article  CAS  Google Scholar 

  47. Reinikainen, T., Ruohonen, L., Nevanen, T., Laaksonen, L., Kraulis, P., Jones, T. A., et al. (1992). Proteins: Struct. Funct. Genet. 14, 475–482.

    Article  CAS  Google Scholar 

  48. Yang, B., & Wyman, C. E. (2004). US Patent 0,185,542.

Download references

Acknowledgment

Authors would like to thank Novozymes Inc. for providing the enzymes and Red Rock Ranch for providing the biomass materials for this research. The funding support for this research was partially provided by a research grant from California Department of Water Resources (grant no. 4600002991).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Pan, Z., Zhang, R. et al. Non-ionic Surfactants and Non-Catalytic Protein Treatment on Enzymatic Hydrolysis of Pretreated Creeping Wild Ryegrass. Appl Biochem Biotechnol 146, 231–248 (2008). https://doi.org/10.1007/s12010-007-8035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-007-8035-9

Keywords

Navigation