Skip to main content
Log in

Stress Radiography for the Diagnosis of Knee Ligament Injuries: A Systematic Review

  • Symposium: Management of the Dislocated Knee
  • Published:
Clinical Orthopaedics and Related Research®

Abstract

Background

Stress radiography is a widely used diagnostic tool to assess injury to the anterior and posterior cruciate ligaments and the medial and lateral structures of the knee. However, to date, numerous techniques have been reported in the literature with no clear consensus as to which methodology is best for assessing ligament stability.

Questions/purposes

The purpose of this review was to identify which stress radiographic techniques have support in the literature for the diagnosis of acute or chronic knee ligament injuries, to define which technique is most accurate and reliable for diagnosing knee ligament injuries, and to compare the use of stress radiography with other diagnostic tests.

Methods

Two independent reviewers performed a systematic review of PubMed (MEDLINE), the EMBASE library, and the Cochrane Controlled Trials Register for English language studies published from January 1970 to August 2013 on the diagnosis of knee ligament injuries using stress radiography. Information describing the ligament(s) investigated, stress radiographic technique, magnitude of force, measures of accuracy and reliability, and comparative diagnostic tests were extracted. Risk of bias was assessed using the QUADAS-2 tool.

Results

A total of 16 stress techniques were described for stress radiography of the knee. The diagnostic accuracy of stress radiography including the sensitivity, specificity, and positive and negative predictive values varied considerably depending on the technique and choice of displacement or gapping threshold. Excellent reliability was reported for the diagnosis of anterior cruciate ligament, posterior cruciate ligament, varus, and valgus knee injuries. Inconsistencies were found across studies regarding the efficacy of stress radiography compared with other diagnostic modalities.

Conclusions

Based on the multitude of stress techniques reported, varying levels of diagnostic accuracy, and inconsistencies regarding comparative efficacy of stress radiography to other diagnostic modalities, we are not able to make specific recommendations with regard to the best stress radiography technique for the diagnosis of knee ligament injuries. Additional comparative studies using consistent methodology and appropriate blinding are necessary to further define differences in accuracy and reliability both among stress radiography techniques and between stress radiography and other diagnostic tests.

Level of Evidence

Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Beldame J, Bertiaux S, Roussignol X, Lefebvre B, Adam JM, Mouilhade F, Dujardin F. Laxity measurements using stress radiography to assess anterior cruciate ligament tears. Orthop Traumatol Surg Res. 2011;97:34–43.

    Article  CAS  PubMed  Google Scholar 

  2. Beldame J, Mouchel S, Bertiaux S, Adam JM, Mouilhade F, Roussignol X, Dujardin F. Anterior knee laxity measurement: comparison of passive stress radiographs Telos and ‘Lerat,’ and GNRB arthrometer. Orthop Traumatol Surg Res. 2012;98:744–750.

    Article  CAS  PubMed  Google Scholar 

  3. Benvenuti JF, Vallotton JA, Meystre JL, Leyvraz PF. Objective assessment of the anterior tibial translation in Lachman test position. Comparison between three types of measurement. Knee Surg Sports Traumatol Arthrosc. 1998;6:215–219.

    Article  CAS  PubMed  Google Scholar 

  4. Daniel DM, Stone ML, Barnett P, Sachs R. Use of the quadriceps active test to diagnose posterior cruciate-ligament disruption and measure posterior laxity of the knee. J Bone Joint Surg Am. 1988;70:386–391.

    CAS  PubMed  Google Scholar 

  5. Dejour D, Ntagiopoulos PG, Saggin PR, Panisset JC. The diagnostic value of clinical tests, magnetic resonance imaging, and instrumented laxity in the differentiation of complete versus partial anterior cruciate ligament tears. Arthroscopy. 2013;29:491–499.

    Article  PubMed  Google Scholar 

  6. Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br. 1994;76:745–749.

    CAS  PubMed  Google Scholar 

  7. Franklin JL, Rosenberg TD, Paulos LE, France EP. Radiographic assessment of instability of the knee due to rupture of the anterior cruciate ligament. A quadriceps-contraction technique. J Bone Joint Surg Am. 1991;73:365–372.

    CAS  PubMed  Google Scholar 

  8. Garavaglia G, Lubbeke A, Dubois-Ferrière V, Suva D, Fritschy D, Menetrey J. Accuracy of stress radiography techniques in grading isolated and combined posterior knee injuries: a cadaveric study. Am J Sports Med. 2007;35:2051–2056.

    Article  PubMed  Google Scholar 

  9. Garcés GL, Perdomo E, Guerra A, Cabrera-Bonilla R. Stress radiography in the diagnosis of anterior cruciate ligament deficiency. Int Orthop. 1995;19:86–88.

    Article  PubMed  Google Scholar 

  10. Garofalo R, Fanelli GC, Cikes A, N’Dele D, Kombot C, Mariani PP, Mouhsine E. Stress radiography and posterior pathological laxity of knee: comparison between two different techniques. Knee. 2009;16:251–255.

    Article  PubMed  Google Scholar 

  11. Granberry WM, Noble PC, Woods GW. Evaluation of an electrogoniometric instrument for measurement of laxity of the knee. J Bone Joint Surg Am. 1990;72:1316–1322.

    CAS  PubMed  Google Scholar 

  12. Gwathmey FW Jr, Tompkins MA, Gaskin CM, Miller MD. Can stress radiography of the knee help characterize posterolateral corner injury? Clin Orthop Relat Res. 2012;470:768–773.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Harilainen A, Myllynen P, Rauste J, Silvennoinen E. Diagnosis of acute knee ligament injuries: the value of stress radiography compared with clinical examination, stability under anesthesia and arthroscopic or operative findings. Ann Chir Gynaecol. 1986;75:37–43.

    CAS  PubMed  Google Scholar 

  14. Hewett TE, Noyes FR, Lee MD. Diagnosis of complete and partial posterior cruciate ligament ruptures. Stress radiography compared with KT-1000 arthrometer and posterior drawer testing. Am J Sports Med. 1997;25:648–655.

    Article  CAS  PubMed  Google Scholar 

  15. Hooper GJ. Radiological assessment of anterior cruciate ligament deficiency. A new technique. J Bone Joint Surg Br. 1986;68:292–296.

    CAS  PubMed  Google Scholar 

  16. Jackman T, LaPrade RF, Pontinen T, Lender PA. Intraobserver and interobserver reliability of the kneeling technique of stress radiography for the evaluation of posterior knee laxity. Am J Sports Med. 2008;36:1571–1576.

    Article  PubMed  Google Scholar 

  17. Jacobsen K. Stress radiographical measurement of the anteroposterior, medial and lateral stability of the knee joint. Acta Orthop Scand. 1976;47:335–334.

    Article  Google Scholar 

  18. Jacobsen K. Stress radiographical measurements of post-traumatic knee instability. A clinical study. Acta Orthop Scand. 1977;48:301–310.

    Article  CAS  PubMed  Google Scholar 

  19. Jacobsen K. Gonylaxometry. Stress radiographic measurement of passive stability in the knee joints of normal subjects and patients with ligament injuries. Accuracy and range of application. Acta Orthop Scand Suppl. 1981;194:1–263.

    Google Scholar 

  20. Jacobsen K, Rosenkilde P. A clinical and stress radiographical follow-up investigation after Jones’ operation for replacing the anterior cruciate ligament. Injury. 1977;8:221–226.

    Article  CAS  PubMed  Google Scholar 

  21. Jung TM, Reinhardt C, Scheffler SU, Weiler A. Stress radiography to measure posterior cruciate ligament insufficiency: a comparison of five different techniques. Knee Surg Sports Traumatol Arthrosc. 2006;14:1116–1121.

    Article  PubMed  Google Scholar 

  22. Kastelein M, Wagemakers HP, Luijsterburg PA, Verhaar JA, Koes BW, Bierma-Zeinstra SM. Assessing medial collateral ligament knee lesions in general practice. Am J Med. 2008;121:982–988.

    Article  PubMed  Google Scholar 

  23. Katz JW, Fingeroth RJ. The diagnostic accuracy of ruptures of the anterior cruciate ligament comparing the Lachman test, the anterior drawer sign, and the pivot shift test in acute and chronic knee injuries. Am J Sports Med. 1986;14:88–91.

    Article  CAS  PubMed  Google Scholar 

  24. Kim SJ, Kim SH, Kim SG, Kung YP. Comparison of the clinical results of three posterior cruciate ligament reconstruction techniques: surgical technique. J Bone Joint Surg Am. 2010;92(Suppl 1):145–157.

    PubMed  Google Scholar 

  25. LaPrade RF, Bernhardson AS, Griffith CJ, Macalena JA, Wijdicks CA. Correlation of valgus stress radiographs with medial knee ligament injuries: an in vitro biomechanical study. Am J Sports Med. 2010;38:330–338.

    Article  PubMed  Google Scholar 

  26. LaPrade RF, Heikes C, Bakker AJ, Jakobsen RB. The reproducibility and repeatability of varus stress radiographs in the assessment of isolated fibular collateral ligament and grade-III posterolateral knee injuries. An in vitro biomechanical study. J Bone Joint Surg Am. 2008;90:2069–2076.

    Article  PubMed  Google Scholar 

  27. LaPrade RF, Terry GC. Injuries to the posterolateral aspect of the knee. Association of anatomic injury patterns with clinical instability. Am J Sports Med. 1997;25:433–438.

    Article  CAS  PubMed  Google Scholar 

  28. Lee YS, Han SH, Jo J, Kwak KS, Nha KW, Kim JH. Comparison of 5 different methods for measuring stress radiographs to improve reproducibility during the evaluation of knee instability. Am J Sports Med. 2011;39:1275–1281.

    Article  PubMed  Google Scholar 

  29. Lerat JL, Moyen B, Jenny JY, Perrier JP. A comparison of pre-operative evaluation of anterior knee laxity by dynamic X-rays and by the arthrometer KT 1000. Knee Surg Sports Traumatol Arthrosc. 1993;1:54–59.

    Article  CAS  PubMed  Google Scholar 

  30. Lerat JL, Moyen BL, Cladière F, Besse JL, Abidi H. Knee instability after injury to the anterior cruciate ligament. Quantification of the Lachman test. J Bone Joint Surg Br. 2000;82:42–47.

    Article  CAS  PubMed  Google Scholar 

  31. Margheritini F, Mancini L, Mauro CS, Mariani PP. Stress radiography for quantifying posterior cruciate ligament deficiency. Arthroscopy. 2003;19:706–711.

    Article  PubMed  Google Scholar 

  32. McPhee IB, Fraser JG. Stress radiography in acute ligamentous injuries of the knee. Injury. 1981;12:383–388.

    Article  CAS  PubMed  Google Scholar 

  33. Oberlander MA, Shalvoy RM, Hughston JC. The accuracy of the clinical knee examination documented by arthroscopy: a prospective study. Am J Sports Med. 1993;21:773–778.

    Article  CAS  PubMed  Google Scholar 

  34. Panisset JC, Ntagiopoulos PG, Saggin PR, Dejour D. A comparison of Telos™ stress radiography versus Rolimeter™ in the diagnosis of different patterns of anterior cruciate ligament tears. Orthop Traumatol Surg Res. 2012;98:751–758.

    Article  PubMed  Google Scholar 

  35. Peeler J, Leiter J, MacDonald P. Accuracy and reliability of anterior cruciate ligament clinical examination in a multidisciplinary sports medicine setting. Clin J Sports Med. 2010;20:80–85.

    Article  CAS  Google Scholar 

  36. Prins M. The Lachman test is the most sensitive and the pivot shift the most specific test for the diagnosis of ACL rupture. Aust J Physiother. 2006;52:66.

    Article  PubMed  Google Scholar 

  37. Rijke AM, Goitz HT, McCue FC 3rd, Delp JL, Lam D, Port Southall E. Graded stress radiography of injured anterior cruciate ligaments. Invest Radiol. 1991;26:926–933.

    Google Scholar 

  38. Rijke AM, Tegtmeyer CJ, Weiland DJ, McCue FC 3rd. Stress examination of the cruciate ligaments: a radiologic Lachman test. Radiology. 1987;165:867–869.

    Article  CAS  PubMed  Google Scholar 

  39. Rios CG, Leger RR, Cote MP, Yang C, Arciero RA. Posterolateral corner reconstruction of the knee: evaluation of a technique with clinical outcomes and stress radiography. Am J Sports Med. 2010;38:1564–1574.

    Article  PubMed  Google Scholar 

  40. Sawant M, Narasimha Murty A, Ireland J. Valgus knee injuries: evaluation and documentation using a simple technique of stress radiography. Knee. 2004;11:25–28.

    Article  PubMed  Google Scholar 

  41. Schulz MS, Russe K, Lampakis G, Strobel MJ. Reliability of stress radiography for evaluation of posterior knee laxity. Am J Sports Med. 2005;33:502–506.

    Article  PubMed  Google Scholar 

  42. Schulz MS, Steenlage ES, Russe K, Strobel MJ. Distribution of posterior tibial displacement in knees with posterior cruciate ligament tears. J Bone Joint Surg Am. 2007;89:332–338.

    Article  PubMed  Google Scholar 

  43. Sekiya JK, Whiddon DR, Zehms CT, Miller MD. A clinically relevant assessment of posterior cruciate ligament and posterolateral corner injuries. Evaluation of isolated and combined deficiency. J Bone Joint Surg Am. 2008;90:1621–1627.

    Article  PubMed  Google Scholar 

  44. Stäubli HU, Jakob RP. Posterior instability of the knee near extension. A clinical and stress radiographic analysis of acute injuries of the posterior cruciate ligament. J Bone Joint Surg Br. 1990;72:225–230.

    PubMed  Google Scholar 

  45. Stäubli HU, Jakob RP. Anterior knee motion analysis. Measurement and simultaneous radiography. Am J Sports Med. 1991;19:172–177.

    Article  PubMed  Google Scholar 

  46. Stäubli HU, Jakob RP, Noesberger B. Anterior-posterior knee instability and stress radiography a prospective biomechanical analysis with the knee in extension. Biomechanics: Current Interdisciplinary Research Developments in Biomechanics. 1985;2:397–402.

    Google Scholar 

  47. Stäubli HU, Noesberger B, Jakob RP. Stress radiography of the knee. Cruciate ligament function studied in 138 patients. Acta Orthop Scand Suppl. 1992;249:1–27.

    PubMed  Google Scholar 

  48. Torzilli PA, Greenberg RL, Hood RW, Pavlov H, Insall JN. Measurement of anterior-posterior motion of the knee in injured patients using a biomechanical stress technique. J Bone Joint Surg Am. 1984;66:1438–1442.

    CAS  PubMed  Google Scholar 

  49. Wagemakers HP, Luijsterburg PA, Boks SS, Heintjes EM, Berger MY, Verhaar JA, Koes BW, Bierma-Zeinstra SM. Diagnostic accuracy of history taking and physical examination for assessing anterior cruciate ligament lesions of the knee in primary care. Arch Phys Med Rehabil. 2010;91:1452–1459.

    Article  PubMed  Google Scholar 

  50. Whiting P, Rutjes AW, Dinnes J, Reitsma J, Bossuyt PM, Kleijnen J. Development and validation of methods for assessing the quality of diagnostic accuracy studies. Health Technol Assess. 2004;8:iii,1–234.

    Google Scholar 

  51. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, Sterne JA, Bossuyt PM; QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–536.

    Article  PubMed  Google Scholar 

  52. Whiting PF, Weswood ME, Rutjes AW, Reitsma JB, Bossuyt PN, Kleijnen J. Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol. 2006;6:9.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Wiertsema SH, van Hooff HJ, Migchelsen LA, Steultjens MP. Reliability of the KT1000 arthrometer and the Lachman test in patients with an ACL rupture. Knee. 2008;15:107–110.

    Article  CAS  PubMed  Google Scholar 

  54. Wirz P, von Stokar P, Jakob RP. The effect of knee position on the reproducibility of measurements taken from stress films: a comparison of four measurement methods. Knee Surg Sports Traumatol Arthrosc. 2000;8:143–148.

    Article  CAS  PubMed  Google Scholar 

  55. Zaffagnini S, Bonanzinga T, Marcheggiani Muccioli GM, Giordano G, Bruni D, Bignozzi S, Lopomo N, Marcacci M. Does chronic medial collateral ligament laxity influence the outcome of anterior cruciate ligament reconstruction? A prospective evaluation with a minimum three-year follow-up. J Bone Joint Surg Br. 2011;93:1060–1064.

    Google Scholar 

Download references

Acknowledgments

We thank Ryan Warth MD, for his feedback throughout this review and Jim Beattie MLIS, for his assistance in retrieving articles in full text for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. LaPrade MD, PhD.

Additional information

One of the authors (RFL) is a paid consultant for Arthrex (Naples, FL, USA). One of the authors certifies that he (EWJ, BTW, RFL) or a member of his or her immediate family, has or may receive payments or benefits, during the study period, an amount of less than USD 10,000 from Smith & Nephew Endoscopy (London, UK), less than USD 10,000 from Arthrex, Inc, less than USD 10,000 from Siemens Medical Solutions USA (Malvern, PA, USA), less than USD 10,000 from Sonoma Orthopedics, Inc (Santa Rosa, CA, USA), less than USD 10,000 from ConMed Linvatec (Largo, FL, USA), less than USD 10,000 from Össur Americas (Foothill Ranch, CA, USA), less than USD 10,000 from Small Bone Innovations, Inc (Morrisville, PA, USA), less than USD 10,000 from Opedix (Scottsdale, AZ, USA), and less than USD 10,000 from Evidence Based Apparel (Alignmed, Santa Ana, CA, USA).

All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research editors and board members are on file with the publication and can be viewed on request.

Clinical Orthopaedics and Related Research neither advocates nor endorses the use of any treatment, drug, or device. Readers are encouraged to always seek additional information, including FDA-approval status, of any drug or device prior to clinical use.

This work was performed at the Steadman Philippon Research Institute, Vail, CO, USA.

About this article

Cite this article

James, E.W., Williams, B.T. & LaPrade, R.F. Stress Radiography for the Diagnosis of Knee Ligament Injuries: A Systematic Review. Clin Orthop Relat Res 472, 2644–2657 (2014). https://doi.org/10.1007/s11999-014-3470-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-014-3470-8

Keywords

Navigation