Skip to main content
Log in

Prediction of Thermohydric History of Whey Protein Concentrate Droplets during Spray Drying

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, we analyzed heat and mass transfer phenomena occurring during spray drying of a whey protein concentrate at pilot scale. Conservation equations were written for both liquid droplets and humid air. Predicted results were then compared with experimental data: particle final moisture content, outlet air temperature, and humidity. The good adequacy found between experimental and predicted data allowed us to use the predicted values as a good indicator of thermohydric history followed by a droplet during drying. These results can also be used to help to find optimal process settings during production of spray-dried powders with specific properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DA:

dry air

DM:

dry matter

WPC:

whey protein concentrate

References

  • Anandharamakrishnan, C., Gimbun, J., Stapley, A. G. F., & Rielly, C. D. (2010). Application of computational fluid dynamic (CFD) simulations to spray-freezing operations. Drying Technology, 28, 94–102.

    Article  CAS  Google Scholar 

  • Andrieu, J., Stamatopoulos, A., & Zafiropoulos, M. (1985). Equation for fitting desorption isotherms of durum wheat pasta. Journal of Food Technology, 40, 651–657.

    Google Scholar 

  • Bernard, C., Broyart, B., Vasseur, J., Relkin, P. (2006). Production of whey protein powders with controlled end-use properties. In Proceedings of the 15th International Drying Symposium, 21–23 august 2006, Budapest, Hungary (CD-ROM).

  • Bernard, C., Broyart, B., Vasseur, J., & Relkin, P. (2008). Whey protein conformation changes during spray-drying, as related to their structure forming properties in liquid foams. Le lait, 88, 65–80.

    Article  CAS  Google Scholar 

  • Bimbenet, J. J., Duquenoy, A., & Trystram, G. (2002). Génie des procédés alimentaires. Paris: Dunod.

    Google Scholar 

  • Birchal, V. S., & Passos, M. L. (2004). Modelling and simulation of drying milk emulsion in spray dryers. In Proceedings of the 14th International Drying Symposium, 22–25 August 2004, Sao Paulo, Brazil (CD-ROM).

  • Chen, X. D., & Jin, Y. (2009). A three-dimensional numerical study of the gas/particle interactions in an industrial-scale spray dryer for milk powder production. Drying Technology, 27, 1018–1027.

    Article  Google Scholar 

  • Chen, X. D., & Lin, S. X. Q. (2004). The reaction engineering approach to modelling drying of milk droplets. In Proceedings of the 14th International Drying Symposium, 22–25 August 2004, Sao Paulo, Brazil (CD-ROM).

  • Chen, X. D., & Lin, S. X. Q. (2005). Air drying of milk droplet under constant and time-dependent conditions. American Institute of Chemical Engineers, 51, 1790–1799.

    Article  CAS  Google Scholar 

  • Chong, L. V., & Chen, X. D. (1999). A mathematical model of the self-heating of spray-dried food powders containing fat, protein, sugar and moisture. Chemical Engineering Science, 54, 4165–4178.

    Article  CAS  Google Scholar 

  • Donovan, M., & Mulvihill, D. M. (1987). Thermal denaturation and aggregation of whey proteins. Irish Journal of Food Science and Technology, 11, 87–100.

    CAS  Google Scholar 

  • Farid, M. (2003). A new approach to modelling of single droplet drying. Chemical Engineering Science, 58, 2985–2993.

    Article  CAS  Google Scholar 

  • Ferrari, G., Meerdink, G., & Walstra, P. (1989). Drying kinetics for a single droplet of skim-milk. Journal of Food Engineering, 10, 215–230.

    Article  Google Scholar 

  • Fletcher, D. F., Guo, B., Harvie, D. J. E., Langrish, T. A. G., Nijdam, J. J., & Williams, J. (2006). What is important in the simulation of spray dryer performance and how do current CFD models perform? Applied Mathematical Modelling, 30, 1281–1292.

    Article  Google Scholar 

  • Galani, D., & Apenten, R. K. O. (1999). Heat-induced denaturation and aggregation of β-lactoglobulin: kinetics of formation of hydrophobic and disulphide-linked aggregates. International Journal of Food Science and Technology, 34, 467–476.

    Article  CAS  Google Scholar 

  • Hassan, H. M., & Mumford, C. J. (1993). Mechanism of drying of skin forming materials. III. Droplets of natural products. Drying Technology, 11, 1765–1782.

    Article  CAS  Google Scholar 

  • Langrish, T. A. G. (2009). Multi-scale mathematical modelling of spray dryers. Journal of Food Engineering, 93, 218–228.

    Article  Google Scholar 

  • Langrish, T. A. G., & Fletcher, D. F. (2001). Spray drying of food ingredients and applications of CFD in spray drying. Chemical Engineering and Processing, 40, 345–354.

    Article  CAS  Google Scholar 

  • Langrish, T. A. G., & Fletcher, D. F. (2003). Prospects for the modelling and design of spray dryers in the 21st century. Drying Technology, 21, 197–215.

    Article  CAS  Google Scholar 

  • Langrish, T. A. G., & Kockel, T. K. (2001). The assessment of a characteristic drying curve for milk powder for use in computational fluid dynamics modelling. Chemical Engineering Journal, 84, 69–74.

    Article  CAS  Google Scholar 

  • Lin, S. X. Q., & Chen, X. D. (2007). The reaction engineering approach to modelling the cream and whey protein concentrate droplet drying. Chemical Engineering and Processing, 46, 437–443.

    Article  CAS  Google Scholar 

  • Livney, Y. D., Corredig, M., & Dalgleish, D. G. (2003). Influence of thermal processing on the properties of dairy colloids. Colloid and Interface Science, 8, 359–364.

    Article  CAS  Google Scholar 

  • Loncin, M., & Bimbenet, J. J. (1995). Bases du génie des procédés alimentaires. Paris: Masson.

    Google Scholar 

  • Masters, K. (2002). Spray drying in practice. Danish Dairy Board: Aarhus, Denmark

  • Mezhericher, M., Levy, A., & Borde, I. (2009). Modeling of droplet drying in spray chambers using 2D and 3D computational fluid dynamics. Drying Technology, 27, 359–370.

    Article  CAS  Google Scholar 

  • Nesic, S. (1989). The evaporation of single droplets—experiments and modelling. Drying, 89, 386–393.

    Google Scholar 

  • Nesic, S., & Vodnik, J. (1991). Kinetics of droplet evaporation. Chemical Engineering Science, 46, 527–537.

    Article  CAS  Google Scholar 

  • Oakley, D. E., Bahu, R. E., & Reay, D. L. (1988). The aerodynamics of cocurrent spray dryers. In Proceedings of 6th International Drying Symposium (IDS 1988), 5–8 September 1988, Versailles, France.

  • Papadakis, S. E., & King, C. J. (1988a). Air temperature and humidity profiles in spray-drying. 1. Features predicted by the particle source in cell model. Industrial and Engineering Chemistry Research, 27, 2111–2116.

    Article  CAS  Google Scholar 

  • Papadakis, S. E., & King, C. J. (1988b). Air temperature and humidity profiles in spray drying. 2. Experimental measurements. Industrial and Engineering Chemistry Research, 27, 2116–2123.

    Article  CAS  Google Scholar 

  • Paris, J. R., Ross, P. N., Dastur, S. P., & Morris, R. L. (1971). Modelling of the air flow pattern in a counter current spray-drying tower. Industrial and Engineering Chemistry Process Design and Development, 10(2), 157–164.

    Article  CAS  Google Scholar 

  • Parti, M., & Palancz, B. (1974). Mathematical model for spray drying. Chemical Engineering Science, 29, 355–362.

    Article  CAS  Google Scholar 

  • Perry, R. H., Green, D. W., & Maloney, J. O. (1984). Perry’s chemical engineers’ handbook. New York: McGraw-Hill.

    Google Scholar 

  • Relkin, P. (1996). Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach. Critical Reviews in Food Science and Nutrition, 36, 565–601.

    Article  CAS  Google Scholar 

  • Relkin, P., Bernard, C., Meylheuc, T., Vasseur, J., & Courtois, F. (2007). Production of whey protein aggregates with controlled end-use properties. Le lait, 87, 337–348.

    Article  CAS  Google Scholar 

  • Straatsma, J., Van Houwelingen, G., Steenbergen, A. E., & De Jong, P. (1999). Spray drying of food products: 1. Simulation model. Journal of Food Engineering, 42, 67–72.

    Article  Google Scholar 

  • Sun, D. W. (2007). Computational fluid dynamics in food processing. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Verdurmen, R. E. M., Straatsma, H., Verschueren, M., Van Haren, J. J., Smit, E., Bargeman, G., & De Jong, P. (2002). Modelling spray drying processes for dairy products. Le Lait, 82, 453–463.

    Article  Google Scholar 

  • Woo, M. W., Daud, W. R. W., Mujumdar, A. S., Talib, M. Z. M., Wu, Z. H., & Tasirin, S. M. (2008). CFD evaluation of droplet drying models in a spray dryer fitted with a rotary atomizer. Drying Technology, 26, 1180–1198.

    Article  CAS  Google Scholar 

  • Zaror, C. A., & Pérez-Correa, J. R. (1991). Model based control of centrifugal atomizer spray drying. Food Control, 2, 170–175.

    Article  Google Scholar 

  • Zbicinski, I., & Li, X. (2006). Conditions for accurate CFD modeling of spray drying process. Drying Technology, 24(9), 1109–1114.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge P. Schuck (INRA-Rennes/STLO) and J.F. Boudier (Ingredia-France) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clémence Bernard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, C., Broyart, B., Absi, R. et al. Prediction of Thermohydric History of Whey Protein Concentrate Droplets during Spray Drying. Food Bioprocess Technol 6, 2904–2915 (2013). https://doi.org/10.1007/s11947-012-0963-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0963-x

Keywords

Navigation