Skip to main content
Log in

Modeling of Coupled Water Transport and Large Deformation During Dehydration of Apple Tissue

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Water loss of fruit during storage has a large impact on fruit quality and shelf life and is essential to fruit drying. Dehydration of fruit tissues is often accompanied by large deformations. One-dimensional water transport and large deformation of cylindrical samples of apple tissue during dehydration were modeled by coupled mass transfer and mechanics and validated by calibrated X-ray CT measurements. Uni-axial compression–relaxation tests were carried out to determine the nonlinear viscoelastic properties of apple tissue. The Mooney–Rivlin and Yeoh hyperelastic potentials with three parameters were effective to reproduce the nonlinear behavior during the loading region. Maxwell model was successful to quantify the viscoelastic behavior of the tissue during stress relaxation. The nonlinear models were superior to linear elastic and viscoelastic models to predict deformation and water loss. The sensitivity of different model parameters using the nonlinear viscoelastic model using Yeoh hyperelastic potentials was studied. The model predictions proved to be more sensitive to water transport parameters than to the mechanical parameters. The large effect of relative humidity and temperature on the deformation of apple tissue was confirmed by this study. The validated model can be employed to better understand postharvest storage and drying processes of apple fruit and thus improve product quality in the cold chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a w :

Water activity

\( \overline b \) :

Modified left Cauchy–Green tensor

C :

The right Cauchy–Green deformation tensor

\( \overline C \) :

Modified right Cauchy–Green deformation tensor

c p :

Heat capacity of air, J kg−1 °C−1

c ϕ :

Water capacity, kg kg−1 Pa−1

C 1, C 2, C 3 :

Coefficients of Mooney–Rivlin hyperelastic potential, Pa

C 10, C 01, C 11 :

Coefficients of Yeoh hyperelastic potential, Pa

d :

Diameter, m

D :

Stiffness matrix linear elastic model, Pa

D d :

Stiffness matrix in linear viscoelastic model, Pa

D air :

Diffusivity of water in air, m2 s−1

ė :

The strain rate, s−1

E :

Modulus of elasticity, Pa

E 1, E 2, E 3 :

The first, second, and third decay elastic moduli, Pa

E e :

The equilibrum modulus of elasticity, Pa

F :

Deformation gradient tensor

F e :

Elastic part of deformation tensor

F s :

Swelling/shrinkage part of deformation tensor

F T :

Transpose of deformation gradient tensor

G :

Shear modulus, Pa

h :

Mass transfer coefficient, m s−1

h m :

Mass transfer coefficient, kg Wm−2 Pa−1 s−1

h T :

Heat transfer coefficient, Wm−2 °C−1

I :

Second order identity tensor

I g :

Gray scale

\( {\overline I_1} \) :

The first modified strain invariant

\( {\overline I_2} \) :

The second modified strain invariant

J :

Jacobian of the deformation

J e :

Jacobian of the elastic deformation

K :

Hydraulic conductivity, kg s−1 m−1 Pa−1

K b :

Bulk modulus, Pa

Le :

Lewis number

n :

Distance from surface, m

Nu :

Nusselt number

R :

Universal gas constant, 8.314 kJ mol−1

Re :

Reynolds number

RH :

Relative humidity of the ambient air, %

Pr :

Prandtl number

q i :

The extension of the corresponding springs

Q a :

Second Piola–Kirchhoff stress, Pa

S :

Second Piola–Kirchhoff stress tensor, Pa

S qx :

Viscoelastic stress, Pa

S ISO :

Isochoric, Pa

\( {S^{\infty }}_{\text{ISO}} \) :

Equilibrium isochoric stress, Pa

\( {S^{\infty }}_{\text{Vol}} \) :

Equilibrium volumetric stress, Pa

t :

Time, s

T :

Temperature, K

U :

Deformation, m

V :

Volume, m3

V w :

Molar volume of water, 18 × 10−6 m3 mol−1

X :

Water content, kg kg−1

X ref :

Stress-free water content, kg kg−1

β :

Volumetric shrinkage coefficient

β a :

Nondimensional strain energy factor

\( {\Upsilon_{\alpha }} \) :

Dissipative potential for the viscoelastic contribution

Г a :

Viscoelastic isochoric response, Pa

ε :

Total strain

ε d :

Shrinkage strain

ε e :

Elastic strain

ε x , ε y , ε z :

Elastic strain in the principal directions

ε xy , ε yz , ε xz :

Shear strain

ε 0 :

Nominal initial strain

η :

Specific viscosity, Pa s

k :

Initial bulk modulus, Pa

λ 1, λ 2, λ 3 :

Stretch ratio in the three principal axes

λ s :

Stretch ratio

λ t :

Thermal conductivity, W m−1 °C−1

μ :

Dynamic viscosity of air, kg m−1 s−1

ρ :

Air density, kg m−3

ρ dm :

Dry mass density, kg m−3

ρ sat :

Saturated vapor density, kg m−3

\( \sum\limits_{{i = 1}}^n {{\Upsilon_{\alpha }}} \) :

The dissipative potential

σ :

The Cauchy stress, Pa

σ(t):

The relaxaton stress, Pa

τ a :

Relaxation time, s

ν :

Poisson’s ratio

ϕ :

Water potential, Pa

ϕ :

Ambient water potential, Pa

χ :

Push-forward operation

\( {\psi^{\infty }}_{\text{VOL}} \) :

Volumetric elastic response

\( {\psi^{\infty }}_{\text{ISO}} \) :

Isochoric elastic response

References

  • Akiyama, T., & Hayakawa, K. (2000). Heat and moisture transfer and hygrophysical changes in elastoplastic hollow cylinder-food during drying. Journal of Food Engineering, 65, 315–323.

    CAS  Google Scholar 

  • Ali, A., Hosseini, M., & Sahari, B. B. (2010). A review of constitutive models for rubber- like materials. American Journal of Engineering and Applied Sciences, 3, 232–239.

    Article  Google Scholar 

  • Amarante, C., Banks, N. H., & Ganesh, S. (2001). Relationship between character of skin cover of coated pears and permeance to water vapour and gases. Postharvest Biology and Technology, 21(3), 291–301.

    Article  Google Scholar 

  • Anand, L., & Chester, S. A. (2010). A coupled theory of fluid permeation and large deformations for elastomeric materials. Journal of the Mechanics and Physics of Solids, 58, 1879–1906.

    Article  Google Scholar 

  • ANSYS. (2009). Hyperelasticity, finite strain elasticity. User’s manual, version 12, Canonsburg, 105–113

  • ASHRAE. (1993). Fundamentals (handbook) (pp. 6.1–6.9). Atlanta: American Society of Heating, Refrigerating and Air-Conditioning Engineering, Inc.

    Google Scholar 

  • Assouline, S., & Tartakovsky, D. M. (2001). Unsaturated hydraulic conductivity function based on a soil fragmentation process. Water Resources Research, 37, 1309–1312.

    Article  Google Scholar 

  • Bialobrzewski, I. (2006). Simultaneous heat and mass transfer in shrinkable apple slab during drying. Drying Technology, 24, 551–559.

    Article  Google Scholar 

  • Bird, R. B., Stewart, W. E., & Lightfoot, E. N. (2002). Transport phenomena (pp. 423–441). New York: Wiley.

    Google Scholar 

  • Bonet, J., & Wood, R. D. (1997). Nonlinear continuum mechanics for finite element analysis (pp. 27–37). Cambridge: Cambridge University Press.

    Google Scholar 

  • COMSOL Multiphysics. (2008). Structural mechanics module, continuum application modes. User’s manual, version 3.5a. Stockholm, Sweden, 167–186

  • De Smedt, V., Barreiro, P., Verlinden, B., Veraverbeke, E., De Baerdemaeker, J., & Nicolaï, B. (2002). A mathematical model for the development of mealiness in apples. Postharvest Biology and Technology, 25(3), 273–291.

    Article  Google Scholar 

  • Dintwa, E., Zeebroeck, M. V., Ramon, H., & Tijskens, E. (2008). Finite element analysis of the dynamic collision of apple fruit. Postharvest Biology and Technology, 49, 260–276.

    Article  Google Scholar 

  • Duda, F. P., Souza, A. C., & Fried, E. (2010). A theory for species migration in finitely strained solid with application to polymer network swelling. Journal of the Mechanics and Physics of Solids, 58, 515–529.

    Article  CAS  Google Scholar 

  • Garikipati, K., & Raoy, V. S. (2001). Recent advances in models for thermal oxidation of silicon. Journal of Computational Physics, 147, 138–170.

    Article  Google Scholar 

  • Gekas, V., & Sjoholm, I. (1995). Apple shrinkage upon drying. Journal of Food Engineering, 25, 123–130.

    Article  Google Scholar 

  • Holzapfel, G. A. (2000). Nonlinear solid mechanics. A continuum approach for engineering (pp. 205–277). Chichester: Wiley.

    Google Scholar 

  • Hubbell, J. H., & Seltzer, S. M. (1995). Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. National Institute of Standards and Technology, 33, 1269–1290.

    Google Scholar 

  • Inazu, T., Iwasaki, K., & Furuta, T. (2005). Stress and crack prediction during drying of Japanese noodle. International Journal of Food Science and Technology, 40, 621–630.

    Article  CAS  Google Scholar 

  • Incropera, F. P., & DE Witt, D. P. (1990). Fundamentals of heat and mass transfer (3rd ed., pp. 348–372). New York: Wiley.

    Google Scholar 

  • Irudayaraj, J., Haghighi, K., & Stroshine, R. L. (1992). Finite-element analysis of drying with application to cereal grains. Journal of Agricultural Engineering Research, 53(3), 209–229.

    Article  Google Scholar 

  • Itaya, Y., Kobayashis, T., & Hayakawa, K. (1995). Three-dimensional heat and moisture transfer with viscoelastic strain–stress formation in composite food during drying. International Journal of Heat and Mass Transfer, 38, 1173–1185.

    Article  CAS  Google Scholar 

  • Izum, M., & Hayakawa, K. (1995). Heat and moisture transfer and hygrostress crack formation and propagation in cylinderical, elastoplastic food. International Journal of Heat and Mass Transfer, 38, 1033–1041.

    Article  Google Scholar 

  • Janjai, S., Lambert, N., Intawee, P., Mahayothee, B., Haewsungcharern, M., Bala, B. K., Nagle, M., Leis, H., & Muller, J. (2008a). Finite element simulation of drying of longan fruit. Drying Technology, 26, 666–674.

    Article  Google Scholar 

  • Janjai, S., Lambert, N., Intawee, P., Mahayothee, B., Haewsungcharern, M., Bala, B. K., & Müller, J. (2008b). Finite element simulation of drying of mango. Biosystems Engineering, 299, 523–531.

    Article  Google Scholar 

  • Kim, G. W., Kim, M. S., Sagara, Y., Bae, Y. H., Lee, I. B., Do, G. S., Lee, S. H., & Kang, S. W. (2008). Determination of the viscoelastic properties of apple flesh under quasi-static compression based on finite element optimization. Journal of Food Science Technology, 14, 221–231.

    Google Scholar 

  • Kowalski, S. J. (2005). Toward a thermodynamics and mechanics of drying processes. Journal of Chemical Engineering Science, 55, 1289–1304.

    Article  Google Scholar 

  • Kowalski, S. J., & Rajewska, K. (2002). Drying-induced stresses in elastic and viscoelastic saturated materials. Chemical Engineering Science, 57, 3883–3892.

    Article  CAS  Google Scholar 

  • Lima, A. G. B., Queiroz, M. R., & Nebra, S. A. (2002). Simultaneous moisture transport and shrinkage during drying of solids with ellipsoidal configuration. Chemical Engineering Journal, 86, 85–93.

    Article  Google Scholar 

  • Lubarda, V. A., & Hoger, A. (2002). On the mechanics of solids with a growing mass. International Journal of Solids and Structures, 39, 4627–4664.

    Article  Google Scholar 

  • Marcotte, M., Toupin, C. J., & Le Maguer, M. (1991). Mass transfer in cellular tissues. Part I: the mathematical model. Journal of Food Engineering, 13(3), 199–220.

    Article  Google Scholar 

  • Martins, P. A. L., Jorge, R. M., & Ferreira, A. J. (2006). A comparative study of several material models for prediction of hyperelastic properties: application to silicone–rubber and soft tissues. Strain, 42, 135–147.

    Article  Google Scholar 

  • Mayor, L., & Sereno, A. M. (2004). Modeling shrinkage during convective drying of food materials: a review. Journal of Food Engineering, 25, 373–386.

    Article  Google Scholar 

  • Mendoza, F., Verboven, P., Mebatsion, H., Kerckhofs, G., Wevers, M., & Nicolaï, B. (2007). Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography. Planta, 226(3), 559–570.

    Article  CAS  Google Scholar 

  • Mohsenin, N. N. (1977). Characterization and failure in solid foods with particular reference to fruits and vegetables. Journal of Texture Studies, 8, 169–193.

    Article  Google Scholar 

  • Mohsenin, N. N. (1986). Physical properties of plant and animal materials (2nd ed., pp. 128–220). New York: Gordon & Breach Science.

    Google Scholar 

  • Moreira, R., Figueiredo, A., & Sereno, A. (2000). Shrinkage of apple disc during drying by warm air convection and freeze drying. Drying Technology, 18, 279–294.

    Article  Google Scholar 

  • Nguyen, T., Verboven, P., Daudin, J., & Nicolaï, B. (2004). Measurement and modelling of water sorption isotherms of ‘Conference’ pear flesh tissue in the high humidity range. Postharvest Biology and Technology, 33(3), 229–241.

    Article  Google Scholar 

  • Nguyen, T. A., Dresselaers, T., Verboven, P., D'hallewin, G., Culeddu, N., Van Hecke, P., & Nicolaï, B. M. (2006). Finite element modelling and MRI validation of 3D transient water profiles in pears during postharvest storage. Journal of the Science of Food and Agriculture, 86(5), 745–756.

    Article  CAS  Google Scholar 

  • Nguyen, T. A., Verboven, P., Scheerlinck, N., Vandewalle, S., & Nicolai, B. M. (2006). Estimation of effective diffusivity of pear tissue and cuticle by means of a numerical water diffusion model. Journal of Food Engineering, 72(1), 63–72.

    Article  Google Scholar 

  • Nguyen, T., Verboven, P., Schenk, A., & Nicolaï, B. (2007). Prediction of water loss from pears (Pyrus communis cv. Conference) during controlled atmosphere storage as affected by relative humidity. Journal of Food Engineering, 83(2), 149–155.

    Article  CAS  Google Scholar 

  • Niamnuy, C., Devahastin, S., Soponronnarit, S., & VijayaRaghavan, G. S. (2008). Modeling coupled transport phenomena and mechanical deformation of shrimp during drying in a jet spouted bed dryer. Journal of Chemical Engineering, 63, 5503–5512.

    Article  CAS  Google Scholar 

  • Nicoleti, J. F., Silveira-Jr, V., Telis-Romero, J., & Telis, V. R. N. (2005). Viscoelastic behavior of persimmons dried at constant air temperature. LWT- Food Science and Technology, 38(2), 143–150.

    Article  CAS  Google Scholar 

  • Nobel, P. S. (1991). Physiochemical and environmental plant physiology (pp. 37–80). New York: Academic.

    Google Scholar 

  • Pena, E., Pena, J. A., Martinez, M. A., & Doblare, M. (2008). On modelling nonlinear viscoelastic effects in ligaments. Journal of Biomechanics, 41, 2659–2666.

    Article  CAS  Google Scholar 

  • Piotr, P. L., & Ewa, J. (2004). Effect of hot air temperature on mechanical properties of dried apples. Journal of Food Engineering, 64, 307–314.

    Article  Google Scholar 

  • Rakesh, V., & Datta, A. K. (2011). Microwave puffing: determination of optimal conditions using a coupled multiphase porous media—large deformation model. Journal of Food Engineering, 107(2), 152–163.

    Article  Google Scholar 

  • Rambert, G., Jugla, G., Grandidier, J. C., & Cangemi, L. (2006). A modelling of the direct couplings between heat transfer, mass transport, chemical reactions and mechanical behaviour. Numerical implementation to explosive decompression. Composites Part A, 3, 571–584.

    Article  Google Scholar 

  • Ratti, C., & Crapiste, G. H. (2009). Modeling of batch dryers for shrinkable biological materials. Food Bioprocess Technology, 2, 248–256.

    Article  Google Scholar 

  • Salunkhe, D. K., & Kadam, S. S. (1995). Handbook of fruit science and technology. Production, composition, storage and processing (pp. 91–122). New York: Marcel Dekker.

    Google Scholar 

  • Srinivasa, A. R., & Baek, S. (2004). Diffusion of a fluid through an elastic solid undergoing large deformation. International Journal of Non-Linear Mechanics, 39, 201–218.

    Article  Google Scholar 

  • Taiz, L., & Zeiger, E. (2002). Plant physiology (3rd ed., pp. 33–45). Sunderland: Sinauer.

    Google Scholar 

  • Toupin, C. J., Marcotte, M., & Le Maguer, M. (1989). Osmoticallyinduced mass transfer in plant storage tissues: a mathematical model. Part I. Journal of Food Engineering, 10(1), 13–38.

    Article  Google Scholar 

  • Van der Sman, R. G. M. (2007). Moisture transport during cooking of meat: an analysis based on Flory–Rehner theory. Meat Science, 76, 730–738.

    Article  Google Scholar 

  • Veraverbeke, E. A., Verboven, P., Van Oostveldt, P., & Nicolai, B. M. (2003a). Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp mitis (Wallr.)) during storage: part 2. Model simulations and practical applications. Postharvest Biology and Technology, 30(1), 89–97.

    Article  Google Scholar 

  • Veraverbeke, E. A., Verboven, P., Van Oostveldt, P., & Nicolai, B. M. (2003b). Prediction of moisture loss across the cuticle of apple (Malus sylvestris subsp mitis (Wallr.)) during storage Part 1. Model development and determination of diffusion coefficients. Postharvest Biology and Technology, 30(1), 75–88.

    Article  Google Scholar 

  • Veraverbeke, E. A., Verboven, P., Scheerlinck, N., Hoang, M. L., & Nicolai, B. M. (2003). Determination of the diffusion coefficient of tissue, cuticle, cutin and wax of apple. Journal of Food Engineering, 58(3), 285–294.

    Article  Google Scholar 

  • Verboven, P., Kerckhofs, G., Mebatsion, H. K., Ho, Q. T., Temst, K., Wevers, M., Cloetens, P., & Nicolaï, B. M. (2008). Three-dimensional gas exchange pathways in pome fruit chracterized by synchroton X-ray computed tomography. Plant Physiology, 142, 518–527.

    Article  Google Scholar 

  • Wang, J. (2003). Anisotropic relaxation properties of pear. Biosystems Engineering, 85(1), 59–65.

    Article  Google Scholar 

  • Wills, R., McGlasson, B., Graham, D., & Joyce, D. (1998). Postharvest: an introduction to the physiology and handling of fruit, vegetables and ornamentals (4th ed., pp. 80–102). Willingford: CAB International.

    Google Scholar 

  • Yang, H., Sakai, N., & Watanabe, M. (2001). Drying model with non-isotropic shrinkage deformation undergoing simultaneous heat and mass transfer. Drying Technology, 19, 1441–1460.

    Article  CAS  Google Scholar 

  • Yao, Z., & Le Maguer, M. (1996). Mathematical modelling and simulation of mass transfer in osmotic dehydration processes. Part I: conceptual and mathematical models. Journal of Food Engineering, 29(3–4), 349–360.

    Article  Google Scholar 

  • Zhang, J., Datta, A. K., & Mukherjee, S. (2005). Transport processes and large deformation during baking of bread. American Institute of Chemical Engineers Journal, 51(9), 2569–2580.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 245288. The authors would also like to acknowledge the Fund for Scientific Research—Flanders (grant no. FWO G.0603.08), the K.U. Leuven (project OT 08/023), and the EC (FP7-226783 project InsideFood) for financial support. Thijs Defraeye is a postdoctoral fellow of the Research Foundation—Flanders (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Nicolai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aregawi, W.A., Defraeye, T., Verboven, P. et al. Modeling of Coupled Water Transport and Large Deformation During Dehydration of Apple Tissue. Food Bioprocess Technol 6, 1963–1978 (2013). https://doi.org/10.1007/s11947-012-0862-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0862-1

Keywords

Navigation