Skip to main content

Advertisement

Log in

Gliomas in Children

  • NEURO-ONCOLOGY (NEOPLASMS) (MR ROSENFELD, SECTION EDITOR)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Gliomas are the most common brain tumor in children and represent nearly 50 % of all pediatric central nervous system (CNS) tumors. They are a heterogeneous group of diseases, ranging from highly malignant and frequently fatal to histologically benign and curable by surgery alone. A uniform treatment approach to these tumors is not practical, due to their histological and biological heterogeneity. Low-grade gliomas (LGGs) are best treated with maximally safe surgical resection, generally achievable for hemispheric or cerebellar locations. Patients with deep midline, optic pathway/hypothalamic, and brain stem locations should undergo subtotal resection or biopsy only. If a complete resection is not feasible, subtotal resection followed by adjuvant chemotherapy or radiotherapy is the standard approach; however, observation alone with serial neuroimaging is used in some asymptomatic, surgically inaccessible lesions. Chemotherapy is used first-line in cases of residual or progressive disease, to avoid or delay radiation therapy and its associated side effects. Regimens demonstrating objective responses and increased progression free survival (PFS) include carboplatin and vincristine (CV), thioguanine/procarbazine/CCNU/vincristine (TPCV), or weekly vinblastine. High-grade gliomas (HGGs) are less common in children than in adults, though are similar in their aggressive clinical behavior, resistance to therapy, and dismal outcomes. There is not a single “standard of care” therapy for non-metastatic HGGs, but generally accepted is an aggressive attempt at a complete surgical resection, followed by multimodality therapy with focal radiation and chemotherapy. The use of temozolomide (TMZ) during and following radiotherapy is common, though it appeared not to improve the outcome in a cooperative group clinical trial when compared to an historical control cohort. The angiogenesis inhibitor bevacizumab, used alone or in combination with irinotecan, is also commonly used as maintenance therapy after radiation. Current trials are prospectively comparing TMZ to newer agents (vorinostat, bevacizumab) in a randomized phase II trial. Brainstem gliomas are a unique category of childhood gliomas. Approximately 80 % of childhood brainstem gliomas arise within the pons as diffuse intrinsic pontine gliomas (DIPG). When biopsied, these are usually HGGs and carry a dismal prognosis. Standard therapy is focal radiation (54–58 Gy), preferably on a clinical trial testing concurrent chemotherapy or biologic agent. No standard chemotherapy agent has impacted survival. The remaining 20 % of brainstem gliomas are low-grade, arise in the midbrain, dorsal medulla, or cervicomedullary junction, and are indolent in nature with a much better prognosis. Improvement in the outcome of all childhood gliomas will require increased knowledge of the underlying biology of these tumors, in order to treat with more biologically based and precise therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dolecek TA, Propp JM, Stroup NE, et al. Central brain tumor registry of the United States. 2012. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro Oncol. 2012;14(sup 5):v1–49.

    Article  PubMed  Google Scholar 

  2. Jones DT, Kocialkowski S, Liu L, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res. 2008;68(21):8673–7.

    Article  PubMed  CAS  Google Scholar 

  3. Sievert AJ, Jackson EM, Gai X, et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol. 2009;19(3):449–58.

    Article  PubMed  CAS  Google Scholar 

  4. Kluwe L, Hagel C, Tatagiba M, et al. Loss of NF1 alleles distinguish sporadic from NF1-associated pilocytic astrocytomas. J Neuropathol Exp Neurol. 2001;60(9):917–20.

    PubMed  CAS  Google Scholar 

  5. Lau N, Feldkamp MM, Roncari L, et al. Loss of neurofibromin is associated with activation of RAS/MAPK and PI3-K/AKT signaling in a neurofibromatosis 1 astrocytoma. J Neuropathol Exp Neurol. 2000;59(9):759–67.

    PubMed  CAS  Google Scholar 

  6. Broniscer A. Past, present, and future strategies in the treatment of high-grade glioma in children. Cancer Invest. 2006;24(1):77–81.

    Article  PubMed  CAS  Google Scholar 

  7. Cohen KJ, Pollack IF, Zhou T, et al. Temozolomide in the treatment of high-grade gliomas in children: a report from the Children’s Oncology Group. Neuro Oncol. 2011;13(3):317–23. This non-randomized trial examined the use of temozolomide with radiation for newly diagnosed HGG. Major findings of this trial include that temozolomide may not be as efficacious in childhood HGG as it is in adult HGG and underscores the differences. It also highlighted the perils of using historical controls.

    Article  PubMed  CAS  Google Scholar 

  8. Fangusaro J. Pediatric high grade glioma: a review and update on tumor clinical characteristics and biology. Front Oncol. 2012;2:105.

    Article  PubMed  Google Scholar 

  9. Paugh BS, Qu C, Jones C, et al. Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. J Clin Oncol. 2010;28(18):3061–8.

    Article  PubMed  Google Scholar 

  10. Pollack IF, Hamilton RL, James CD, et al. Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children’s Cancer Group 945 cohort. J Neurosurg. 2006;105(5 Suppl):418–24.

    PubMed  Google Scholar 

  11. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807–12.

    Article  PubMed  CAS  Google Scholar 

  12. Liang ML, Ma J, Ho M, et al. Tyrosine kinase expression in pediatric high grade astrocytoma. J Neurooncol. 2008;87(3):247–53.

    Article  PubMed  Google Scholar 

  13. Schwartzentruber J, Korshunov A, Liu XY, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482(7384):226–31.

    Article  PubMed  CAS  Google Scholar 

  14. Wu G, Broniscer A, McEachron TA, et al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet. 2012;44(3):251–3.

    Article  PubMed  CAS  Google Scholar 

  15. Paugh BS, Broniscer A, Qu C, et al. Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. J Clin Oncol. 2011;29(30):3999–4006. This paper on genome-wide studies in a large cohort of DIPG samples identifies relevant genomic alterations likely important in tumorigenesis and highlights the distinct biology of DIPG compared to HGG. This study also raises awareness of the importance of collecting tumor tissue for DIPG.

    Article  PubMed  CAS  Google Scholar 

  16. Sanders RP, Kocak M, Burger PC, et al. High-grade astrocytoma in very young children. Pediatr Blood Cancer. 2007;49(7):888–93.

    Article  PubMed  Google Scholar 

  17. Pollack IF, Hamilton RL, Sobol RW, et al. O6-methylguanine-DNA methyltransferase expression strongly correlates with outcome in childhood malignant gliomas: results from the CCG-945 Cohort. J Clin Oncol. 2006;24(21):3431–7.

    Article  PubMed  CAS  Google Scholar 

  18. Pollack IF, Hamilton RL, Sobol RW, et al. Mismatch repair deficiency is an uncommon mechanism of alkylator resistance in pediatric malignant gliomas: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2010;55(6):1066–71.

    Article  PubMed  Google Scholar 

  19. Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):1350–4.

    Article  PubMed  CAS  Google Scholar 

  20. Jansen MH, van Vuurden DG, Vandertop WP, et al. Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology. Cancer Treat Rev. 2012;38(1):27–35.

    Article  PubMed  CAS  Google Scholar 

  21. Grill J, Puget S, Andreiuolo F, et al. Critical oncogenic mutations in newly diagnosed pediatric diffuse intrinsic pontine glioma. Pediatr Blood Cancer. 2012;58(4):489–91.

    Article  PubMed  Google Scholar 

  22. Roujeau T, Machado G, Garnett MR, et al. Stereotactic biopsy of diffuse pontine lesions in children. J Neurosurg. 2007;107(1 Suppl):1–4.

    PubMed  Google Scholar 

  23. Buczkowicz P, Zarghooni M, Bartels U, et al. Aurora Kinase B. Is a Potential Therapeutic Target in Pediatric Diffuse Intrinsic Pontine Glioma. Brain Pathol. 2012.

  24. Zarghooni M, Bartels U, Lee E, et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol. 2010;28(8):1337–44.

    Article  PubMed  CAS  Google Scholar 

  25. Morita N, Harada M, Otsuka H, et al. Clinical application of MR spectroscopy and imaging of brain tumor. Magn Reson Med Sci. 2010;9(4):167–75.

    Article  PubMed  CAS  Google Scholar 

  26. Lev MH, Ozsunar Y, Henson JW, et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas [corrected]. AJNR Am J Neuroradiol. 2004;25(2):214–21.

    PubMed  Google Scholar 

  27. Hipp SJ, Steffen-Smith E, Hammoud D, et al. Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro Oncol. 2011;13(8):904–9.

    Article  PubMed  Google Scholar 

  28. Perilongo G, Garre ML, Giangaspero F. Low-grade gliomas and leptomeningeal dissemination: a poorly understood phenomenon. Childs Nerv Syst. 2003;19(4):197–203.

    PubMed  Google Scholar 

  29. Sutton LN, Cnaan A, Klatt L, et al. Postoperative surveillance imaging in children with cerebellar astrocytomas. J Neurosurg. 1996;84(5):721–5.

    Article  PubMed  CAS  Google Scholar 

  30. Shaw EG, Wisoff JH. Prospective clinical trials of intracranial low-grade glioma in adults and children. Neuro Oncol. 2003;5(3):153–60.

    Article  PubMed  Google Scholar 

  31. Selvapandian S. Endoscopic management of thalamic gliomas. Minim Invasive Neurosurg. 2006;49(4):194–6.

    Article  PubMed  CAS  Google Scholar 

  32. Li KW, Roonprapunt C, Lawson HC, et al. Endoscopic third ventriculostomy for hydrocephalus associated with tectal gliomas. Neurosurg Focus. 2005;18(6A):E2.

    PubMed  Google Scholar 

  33. Finlay JL, Boyett JM, Yates AJ, et al. Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Childrens cancer group. J Clin Oncol. 1995;13(1):112–23.

    PubMed  CAS  Google Scholar 

  34. Doxey D, Bruce D, Sklar F, et al. Posterior fossa syndrome: identifiable risk factors and irreversible complications. Pediatr Neurosurg. 1999;31(3):131–6.

    Article  PubMed  CAS  Google Scholar 

  35. Listernick R, Ferner RE, Liu GT, et al. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 2007;61(3):189–98.

    Article  PubMed  CAS  Google Scholar 

  36. Armstrong GT, Liu Q, Yasui Y, et al. Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2009;101(13):946–58.

    Article  PubMed  Google Scholar 

  37. Cotter SE, McBride SM, Yock TI. Proton radiotherapy for solid tumors of childhood. Technol Cancer Res Treat. 2012;11(3):267–78.

    Article  PubMed  Google Scholar 

  38. Hug EB, Muenter MW, Archambeau JO, et al. Conformal proton radiation therapy for pediatric low-grade astrocytomas. Strahlenther Onkol. 2002;178(1):10–7.

    Article  PubMed  Google Scholar 

  39. Gnekow AK, Kortmann RD, Pietsch T, et al. Low grade chiasmatic-hypothalamic glioma-carboplatin and vincristin chemotherapy effectively defers radiotherapy within a comprehensive treatment strategy—report from the multicenter treatment study for children and adolescents with a low grade glioma—HIT-LGG 1996—of the Society of Pediatric Oncology and Hematology (GPOH). Klin Padiatr. 2004;216(6):331–42.

    Article  PubMed  CAS  Google Scholar 

  40. Gnekow AK, Falkenstein F, von Hornstein S, et al. Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro Oncol. 2012;14(10):1265–84.

    Article  PubMed  CAS  Google Scholar 

  41. Packer RJ, Ater J, Allen J, et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J Neurosurg. 1997;86(5):747–54.

    Article  PubMed  CAS  Google Scholar 

  42. Merchant TE, Kun LE, Wu S, et al. Phase II trial of conformal radiation therapy for pediatric low-grade glioma. J Clin Oncol. 2009;27(22):3598–604.

    Article  PubMed  Google Scholar 

  43. Dufour C, Grill J, Lellouch-Tubiana A, et al. High-grade glioma in children under 5 years of age: a chemotherapy only approach with the BBSFOP protocol. Eur J Cancer. 2006;42(17):2939–45.

    Article  PubMed  CAS  Google Scholar 

  44. Massimino M, Cohen KJ, Finlay JL. Is there a role for myeloablative chemotherapy with autologous hematopoietic cell rescue in the management of childhood high-grade astrocytomas? Pediatr Blood Cancer. 2010;54(4):641–3.

    Article  PubMed  Google Scholar 

  45. Hargrave D, Bartels U, Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol. 2006;7(3):241–8.

    Article  PubMed  Google Scholar 

  46. Packer RJ, Krailo M, Mehta M, et al. A Phase I study of concurrent RMP-7 and carboplatin with radiation therapy for children with newly diagnosed brainstem gliomas. Cancer. 2005;104(9):1968–74.

    Article  PubMed  CAS  Google Scholar 

  47. Prados MD, Wara WM, Edwards MS, et al. The treatment of brain stem and thalamic gliomas with 78 Gy of hyperfractionated radiation therapy. Int J Radiat Oncol Biol Phys. 1995;32(1):85–91.

    Article  PubMed  CAS  Google Scholar 

  48. Sanghavi SN, Needle MN, Krailo MD, et al. A phase I study of topotecan as a radiosensitizer for brainstem glioma of childhood: first report of the Children’s Cancer Group-0952. Neuro Oncol. 2003;5(1):8–13.

    PubMed  CAS  Google Scholar 

  49. Prados MD, Edwards MS, Rabbitt J, et al. Treatment of pediatric low-grade gliomas with a nitrosourea-based multiagent chemotherapy regimen. J Neurooncol. 1997;32(3):235–41.

    Article  PubMed  CAS  Google Scholar 

  50. Ater JL, Zhou T, Holmes E, et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(21):2641–7. This large, prospective randomized trial compares the use of carboplatin/vincristine and TPCV for treating LGG in children under 10 years of age, and validates the use of chemotherapy to delay or defer RT.

    Article  PubMed  Google Scholar 

  51. Massimino M, Spreafico F, Cefalo G, et al. High response rate to cisplatin/etoposide regimen in childhood low-grade glioma. J Clin Oncol. 2002;20(20):4209–16.

    Article  PubMed  CAS  Google Scholar 

  52. Massimino M, Spreafico F, Riva D, et al. A lower-dose, lower-toxicity cisplatin-etoposide regimen for childhood progressive low-grade glioma. J Neurooncol. 2010;100(1):65–71.

    Article  PubMed  CAS  Google Scholar 

  53. Lafay-Cousin L, Holm S, Qaddoumi I, et al. Weekly vinblastine in pediatric low-grade glioma patients with carboplatin allergic reaction. Cancer. 2005;103(12):2636–42.

    Article  PubMed  CAS  Google Scholar 

  54. Bouffet E, Jakacki R, Goldman S, et al. Phase II study of weekly vinblastine in recurrent or refractory pediatric low-grade glioma. J Clin Oncol. 2012;30(12):1358–63.

    Article  PubMed  CAS  Google Scholar 

  55. Hwang EI, Jakacki RI, Fisher MJ, et al. Long-term efficacy and toxicity of bevacizumab-based therapy in children with recurrent low-grade gliomas. Pediatr Blood Cancer. 2012. doi:10.1002/pbc.24297.

  56. Lashkari HP, Saso S, Moreno L, et al. Using different schedules of Temozolomide to treat low grade gliomas: systematic review of their efficacy and toxicity. J Neurooncol. 2011;105(2):135–47.

    Article  PubMed  CAS  Google Scholar 

  57. Sposto R, Ertel IJ, Jenkin RD, et al. The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Childrens Cancer Study Group. J Neurooncol. 1989;7(2):165–77.

    Article  PubMed  CAS  Google Scholar 

  58. Boyett J, Yates A, Gilles FH, et al. When is a high-grade astrocytoma (HGA) not a HGA? Results of a central review of 226 cases of anaplastic astrocytoma (AA), glioblastoma multiforme (GBM), and other-HGA (OTH-HGA) by five neuropathologists. Proc Am Soc Clin Oncol. 1998;17:526a.

    Google Scholar 

  59. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  PubMed  CAS  Google Scholar 

  60. Soffietti R, Trevisan E, Bertero L, et al. Anti-angiogenic approaches to malignant gliomas. Curr Cancer Drug Targets. 2012;12(3):279–88.

    Article  PubMed  CAS  Google Scholar 

  61. Gururangan S, Chi SN, Young Poussaint T, et al. Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a Pediatric Brain Tumor Consortium study. J Clin Oncol. 2010;28(18):3069–75.

    Article  PubMed  CAS  Google Scholar 

  62. Parekh C, Jubran R, Erdreich-Epstein A, et al. Treatment of children with recurrent high grade gliomas with a bevacizumab containing regimen. J Neurooncol. 2011;103(3):673–80.

    Article  PubMed  CAS  Google Scholar 

  63. Narayana A, Kunnakkat S, Chacko-Mathew J, et al. Bevacizumab in recurrent high-grade pediatric gliomas. Neuro Oncol. 2010;12(9):985–90.

    Article  PubMed  CAS  Google Scholar 

  64. Sweet JA, Feinberg ML, Sherman JH. The role of avastin in the management of recurrent glioblastoma. Neurosurg Clin N Am. 2012;23(2):331–41. x.

    Google Scholar 

  65. Finlay JL, Dhall G, Boyett JM, et al. Myeloablative chemotherapy with autologous bone marrow rescue in children and adolescents with recurrent malignant astrocytoma: outcome compared with conventional chemotherapy: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2008;51(6):806–11.

    Article  PubMed  Google Scholar 

  66. Bradley KA, Zhou T, McNall-Knapp RY, et al. Motexafin-gadolinium and involved field radiation therapy for intrinsic pontine glioma of childhood: a children’s oncology group phase 2 study. Int J Radiat Oncol Biol Phys. 2013;85(1):e55–60.

    Article  PubMed  CAS  Google Scholar 

  67. Pollack IF, Jakacki RI, Blaney SM, et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro Oncol. 2007;9(2):145–60.

    Article  PubMed  CAS  Google Scholar 

  68. Haas-Kogan DA, Banerjee A, Poussaint TY, et al. Phase II trial of tipifarnib and radiation in children with newly diagnosed diffuse intrinsic pontine gliomas. Neuro Oncol. 2011;13(3):298–306.

    Article  PubMed  CAS  Google Scholar 

  69. Pollack IF, Stewart CF, Kocak M, et al. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro Oncol. 2011;13(3):290–7.

    Article  PubMed  CAS  Google Scholar 

  70. Broniscer A, Baker JN, Tagen M, et al. Phase I study of vandetanib during and after radiotherapy in children with diffuse intrinsic pontine glioma. J Clin Oncol. 2010;28(31):4762–8.

    Article  PubMed  CAS  Google Scholar 

  71. Okada H, Low KL, Kohanbash G, et al. Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas. J Neurooncol. 2008;88(3):245–50.

    Article  PubMed  CAS  Google Scholar 

  72. Li G, Mitra SS, Monje M, et al. Expression of epidermal growth factor variant III (EGFRvIII) in pediatric diffuse intrinsic pontine gliomas. J Neurooncol. 2012;108(3):395–402.

    Article  PubMed  CAS  Google Scholar 

  73. Yalon M, Rood B, Macdonald TJ, et al. A feasibility and efficacy study of rapamycin and erlotinib for recurrent pediatric low-grade glioma (LGG). Pediatr Blood Cancer. 2013;60(1):71–6.

    Article  PubMed  Google Scholar 

  74. Sands SA, Zhou T, O’Neil SH, et al. Long-term follow-up of children treated for high-grade gliomas: children’s oncology group L991 final study report. J Clin Oncol. 2012;30(9):943–9.

    Article  PubMed  Google Scholar 

  75. Cappelli C, Grill J, Raquin M, et al. Long-term follow up of 69 patients treated for optic pathway tumours before the chemotherapy era. Arch Dis Child. 1998;79(4):334–8.

    Article  PubMed  CAS  Google Scholar 

  76. Pollack IF, Claassen D. al-Shboul Q, et al. Low-grade gliomas of the cerebral hemispheres in children: an analysis of 71 cases. J Neurosurg. 1995;82(4):536–47.

    Article  PubMed  CAS  Google Scholar 

  77. Sutton LN, Molloy PT, Sernyak H, et al. Long-term outcome of hypothalamic/chiasmatic astrocytomas in children treated with conservative surgery. J Neurosurg. 1995;83(4):583–9.

    Article  PubMed  CAS  Google Scholar 

  78. Lacaze E, Kieffer V, Streri A, et al. Neuropsychological outcome in children with optic pathway tumours when first-line treatment is chemotherapy. Br J Cancer. 2003;89(11):2038–44.

    Article  PubMed  CAS  Google Scholar 

  79. Campen CJ, Kranick SM, Kasner SE, et al. Cranial irradiation increases risk of stroke in pediatric brain tumor survivors. Stroke. 2012;43(11):3035–40.

    Article  PubMed  Google Scholar 

  80. Bowers DC, Liu Y, Leisenring W, et al. Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2006;24(33):5277–82.

    Article  PubMed  Google Scholar 

  81. Partap S. Stroke and cerebrovascular complications in childhood cancer survivors. Semin Pediatr Neurol. 2012;19(1):18–24.

    Article  PubMed  Google Scholar 

  82. Mostoufi-Moab S, Grimberg A. Pediatric brain tumor treatment: growth consequences and their management. Pediatr Endocrinol Rev. 2010;8(1):6–17.

    PubMed  Google Scholar 

Download references

Disclosure

Jane E. Minturn declares that she has no conflict of interest.

Michael J. Fisher has received grant support from the Department of Defense, the Pediatric Low Grade Astrocytoma Foundation, and Bayer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Fisher MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minturn, J.E., Fisher, M.J. Gliomas in Children. Curr Treat Options Neurol 15, 316–327 (2013). https://doi.org/10.1007/s11940-013-0225-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-013-0225-x

Keywords

Navigation