Skip to main content

Advertisement

Log in

Parkinson’s disease: Surgical options

  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Surgical therapy for Parkinson’s disease (PD) has been a treatment option for over 100 years. Advances in the knowledge of basal ganglia physiology and in techniques of stereotactic neurosurgery and neuroimaging have allowed more accurate placement of lesions or “brain pacemakers” in the sensorimotor regions of target nuclei. This, in turn, has led to improved efficacy with fewer complications than in the past. Currently, bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) or the internal segment of the globus pallidus (GPi) is the preferred option (and is approved by the US Food and Drug Administration) for the surgical treatment of PD. The most important predictors for outcome for DBS for PD are patient selection and electrode location. Patients should have a documented preoperative improvement from dopaminergic medication of at least 30% in the patient’s Unified Parkinson’s Disease Rating Scale motor disability scores. A levodopa challenge may be needed to document the best “on” state. Dementia or active cognitive decline must be excluded. Active psychiatric disease should be treated preoperatively. Patients should be motivated, with good support systems, and committed to the postoperative management of DBS therapy. Deep brain stimulation should be considered when the patient begins to experience dyskinesia and on-off fluctuations despite optimal medical therapy. Deep brain stimulation is not a good option at the final stages of the disease because of the increased incidence of dementia and severe comorbidity. The DBS electrode should be placed in the sensorimotor region of the GPi or STN. Subthalamic nucleus and GPi DBS can improve all motor aspects of PD, as well as predictable “on” time, without dyskinesia or fluctuations. On average, STN DBS results in a greater reduction of dopaminergic medication compared with GPi DBS. Because of the smaller size of the target region, the pulse generator battery life is longer with STN then with GPi DBS. Deep brain stimulation programming is a skill that is readily learned and may be required of all neurologists in the future. Emerging surgical therapies are restorative, and they aim to replace or regenerate degenerating dopaminergic neurons. These include embryonic mesencephalic tissue transplantation, human embryonic stem cell transplantation, and gene-derived methods of intracerebral implantation of growth factors and dopamineproducing cell lines. It will be important to determine whether DBS, if performed before the onset of motor response complications to medical therapy, may prevent this stage of disease altogether or delay it for a significant period of time. The same question applies to the future with restorative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Bronte-Stewart HM, Minn AY, Rodrigues K, et al.: Postural instability in idiopathic Parkinson’s disease: the role of medication and unilateral pallidotomy. Brain 2002, 125:2100–2114. This study showed that postural instability was present in all patients with advanced PD. Medication worsened and pallidotomy improved sensory aspects of postural instability in the majority of patients; each improved motor aspects of postural instability.

    Article  PubMed  Google Scholar 

  2. Feger J, Hassani O: The subthalamic nucleus and its connections: new electrophysiologic and pharmacological data. Adv Neurol 1997, 74:31–43.

    PubMed  CAS  Google Scholar 

  3. DeLong M: Primate models of movement disorders of basal ganglia origin. Trends Neurosci 1990, 13:281–285.

    Article  PubMed  CAS  Google Scholar 

  4. Hammond C, Deniau J, Rizk A, Feger J: Electrophysiological demonstration of an excitatory subthalamonigral pathway in the rat. Brain Res 1978, 151:235–244.

    Article  PubMed  CAS  Google Scholar 

  5. Kita H, Kitai S: Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Res 1991, 564:296–305.

    Article  PubMed  CAS  Google Scholar 

  6. Robledo P, Feger J: Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: electrophysiological data. Brain Res 1990, 518:47–54.

    Article  PubMed  CAS  Google Scholar 

  7. Wichmann T, Bergman H, DeLong M: The primate subthalamic nucleus: I. Functional properties in intact animals. J Neurophysiol 1994, 72:494–506.

    PubMed  CAS  Google Scholar 

  8. Bouyer J, Joh T, Pickel V: Ultrastructural localization of tyrosine hydroxylase in rat nucleus accumbens. J Comp Neurol 1984, 227:92–103.

    Article  PubMed  CAS  Google Scholar 

  9. Bezard E, Boraud T, Bioulae B, Gross C: Pre-symptomatic revelation of experimental Parkinsonism. Neuro Report 1997, 8:435–438.

    CAS  Google Scholar 

  10. Bergman H, Wichmann T, DeLong M: Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 1990, 249:1436–1438.

    Article  PubMed  CAS  Google Scholar 

  11. Bergman H, Wichmann T, Karmon B, DeLong M: The primate subthalamic nucleus: II. Neuronal activity in the MPTP model of Parkinsonism. J Neurophysiol 1994, 72:507–520.

    PubMed  CAS  Google Scholar 

  12. Filion M, Tremblay L: Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTPinduced parkinsonism. Brain Res 1991, 547:142–151.

    PubMed  CAS  Google Scholar 

  13. Miller W, DeLong M: Altered Tonic Activity of Neurons in the Globus Pallidus and Subthalamic Nucleus in the Primate MPTP Model of Parkinsonism. New York: Plenum Press; 1987.

    Google Scholar 

  14. Vitek J, Bakay R, Kaneoke Y, et al.: Microelectrodeguided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease [see comments]. J Neurosurg 1998, 88:1027–1043.

    PubMed  CAS  Google Scholar 

  15. Lozano A, Hutchison W, Kiss Z, et al.: Methods for microelectrode-guided posteroventral pallidotomy [see comments]. J Neurosurg 1996, 84:192–202.

    Google Scholar 

  16. Aziz T, Peggs D, Sambrook M, Crossman A: Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov Disord 1991, 6:288–292.

    Article  PubMed  CAS  Google Scholar 

  17. Aziz T, Peggs D, Agarwal E, et al.: Subthalamic nucleotomy alleviates parkinsonism in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-exposed primate. Br J Neurosurg 1992, 6:288–292.

    Google Scholar 

  18. Benazzouz A, Gross C, Fegar J, et al.: Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 1993, 5:382–389.

    Article  PubMed  CAS  Google Scholar 

  19. Limousin P, Pollak P, Benazzouz A, et al.: Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995, 345:91–95.

    Article  PubMed  CAS  Google Scholar 

  20. Baron M, Vitek J, Bakay R, et al.: Treatment of advanced Parkinson’s disease by posterior GPi pallidotomy: 1-year results of a pilot study [see comments]. Ann Neurol 1996, 40:355–366.

    Article  PubMed  CAS  Google Scholar 

  21. Lozano A, Hutchison W, Dostrovsky J: Microelectrode monitoring of cortical and subcortical structures during stereotactic surgery. Acta Neurochir 1995, 64(suppl):30–34.

    CAS  Google Scholar 

  22. Horsley V: The function of the so-called motor area of the brain. BMJ 1990, 21:125–132.

    Google Scholar 

  23. Putnam T: Relief from unilateral paralysis agitans by section of the lateral pyramidal tract. Arch Neurol 1938, 40:1049.

    Google Scholar 

  24. Klemme R: Surgical treatment of dystonia, paralysis agitans and athetosis. Arch Neurol 1940, 44:926.

    Google Scholar 

  25. Bucy P, Case J: Surgical relief of tremor at rest. Ann Surg 1945, 122:933–941.

    PubMed  CAS  Google Scholar 

  26. Mackay R: [Quote from introduction]. Neurol Psychiatry Neurosurg 1952, 1:7–8.

    Google Scholar 

  27. Cooper I: Surgical alleviation of Parkinsonism: effects of occlusion of the anterior choroidal artery. J Am Geriatr Soc 1954, 11:691–717.

    Google Scholar 

  28. Meyers R: Surgical experiments in the therapy of certain extrapyramidal diseases: a current evaluation. Acta Psychiatr Neurol Scand 1951, 67(suppl):1–42.

    Article  CAS  Google Scholar 

  29. Spiegel E, Wycis H, Freed H: Stereoencephalotomy: thalamotomy and related procedures. JAMA 1952, 148:446–451.

    CAS  Google Scholar 

  30. Hassler R, Riechert T: Indikationen und Lokalisationsmethode der gezielten Hirnoperationen. Nervenartz 1954, 25:441–447.

    CAS  Google Scholar 

  31. Spiegel E, Wycis H, Marks M, Lee A: Stereotaxic apparatus for operations on the human brain. Science 1946, 106:349–350.

    Article  Google Scholar 

  32. Cooper I: Intracerebral injection of Procaine into the globus pallidus in hyperkinetic disorders. Science 1954, 119:417–418.

    Article  PubMed  CAS  Google Scholar 

  33. Hassler R, Riechert T, Mundinger F, et al.: Physiological observations in stereotaxic operations in extrapyramidal motor disturbances. Brain 1960, 83:337–350.

    Article  PubMed  CAS  Google Scholar 

  34. Guiot G: Le traitement des syndromes parkinsoniens par la destruction du pallidum interne. Neurochir 1958, 1:94–98.

    CAS  Google Scholar 

  35. Cooper I: Parkinsonism: Its Medical and Surgical Therapy. Springfield: Charles C. Thomas; 1961.

    Google Scholar 

  36. Cooper I: Surgical treatment of Parkinsonism. Ann Rev Med 1965, 16:309–330.

    Article  PubMed  CAS  Google Scholar 

  37. Mundinger F, Reichert T: Ergebnisse der stereotaktischen Hirnoperationen bei extrapyramidalen Bewegungsstorungen auf Grund postoperativer und Langzeituntersuchungen. Dtsch Zschft Nervenheilk 1961, 182:542–576.

    Article  CAS  Google Scholar 

  38. Riechert T: Long-term follow-up of results of stereotaxic treatment in extrapyramidal disorders. Confin Neurol 1962, 22:356–363.

    PubMed  CAS  Google Scholar 

  39. Matsumoto K, Asano T, Baba T, et al.: Long-term followup results of bilateral thalamotomy for Parkinsonism. Appl Neurophysiol 1976, 39:257–260.

    Article  PubMed  Google Scholar 

  40. Selby G: Stereotactic surgery for the relief of Parkinson’s. J Neurol Sci 1967, 5:315–342.

    Article  PubMed  CAS  Google Scholar 

  41. Benabid A, Pollak P, Gervason C, et al.: Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 1991, 337:403–406.

    Article  PubMed  CAS  Google Scholar 

  42. Benabid A, Pollak P, Gross C, et al.: Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg 1994, 62:76–84.

    Article  PubMed  CAS  Google Scholar 

  43. Ondo W, Almaguer M, Jankovic J, Simpson R: Thalamic deep brain stimulation. Arch Neurol 2001, 58:218–222.

    Article  PubMed  CAS  Google Scholar 

  44. Obeso J, Olanow C, Rodriguez-Oroz M, et al.: Deepbrain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 2001, 345:956–963.

    Article  Google Scholar 

  45. Lang A, Duff J, Saint-Cyr J, et al.: Posteroventral medial pallidotomy in Parkinson’s disease. J Neurol 1999, 246(suppl):II28-II41.

    Article  PubMed  Google Scholar 

  46. Kazumata K, Antonini A, Dhawan V, et al.: Preoperative indicators of clinical outcome following stereotaxic pallidotomy. Neurology 1997, 49:1083–1090.

    PubMed  CAS  Google Scholar 

  47. Charles PD, Van Blercom N, Krack P, et al.: Predictors of effective bilateral subthalamic nucleus stimulation for PD. Neurology 2002, 59:932–934.

    PubMed  CAS  Google Scholar 

  48. Ardouin C, Pillon B, Peiffer E, et al.: Bilateral subthalamic or pallidal stimulation for Parkinson’s disease affects neither memory nor executive functions: a consecutive series of 62 patients. Ann Neurol 1999, 46:217–223.

    Article  PubMed  CAS  Google Scholar 

  49. Saint-Cyr JA, Trepanier LL: Neuropsychologic assessment of patients for movement disorder surgery. Mov Disord 2000, 15:771–783.

    Article  PubMed  CAS  Google Scholar 

  50. Svennilson E, Torvik A, Lowe R, Leksell L: Treatment of Parkinsonism by stereotactic thermolesions in the pallidal region. Acta Psychiatr Scand 1960, 35:358–377.

    PubMed  CAS  Google Scholar 

  51. Krayenbuhl H, Wyss O, Yasargil M: Bilateral thalamotomy and pallidotomy as treatment for bilateral Parkinsonism. J Neurosurg 1961, 18:428–444.

    Google Scholar 

  52. Spiegel E, Wycis H: Stereoencephalotomy: Part 2 (Clinical and Physiological Applications). New York: Grune and Stratton; 1962.

    Google Scholar 

  53. Vitek J, Bakay R, DeLong M: Microelectrode-guided pallidotomy for medically intractable Parkinson’s disease. Adv Neurol 1997, 74:183–198.

    PubMed  CAS  Google Scholar 

  54. Vitek J, Bakay R, Freeman A, et al.: Randomized clinical trial of GPi pallidotomy versus best medical therapy for Parkinson’s disease [manuscript submitted for publication].

  55. Gross R, Lombardi W, Lang A, et al.: Relationship of lesion location to clinical outcome following microelectrode-guided pallidotomy for Parkinson’s disease [see comments]. Brain 1999, 122:405–416.

    Article  PubMed  Google Scholar 

  56. Eskandar E, Cosgrove G, Shinobu L, Penney J: The importance of accurate lesion placement in posteroventral pallidotomy: report of two cases. J Neurosurg 1998, 89:630–634.

    PubMed  CAS  Google Scholar 

  57. Bronte-Stewart H, Hill B, Molander M, et al.: Lesion location predicts clinical outcome of pallidotomy. Mov Disord 1998, 13:300.

    Google Scholar 

  58. Bronte-Stewart H, Hill B, McGuire K, et al.: Superior outcomes of bilateral STN DBS in IPD attributed to precise intraoperative localization techniques. Neurology 2001, 56(suppl):A279.

    Article  Google Scholar 

  59. Bertrand C, Martiniz N: Experimental and clinical surgery in dyskinetic disease. Confin Neurol 1962, 22:375–382.

    PubMed  CAS  Google Scholar 

  60. Broager B: The surgical treatment of Parkinsonism. Acta Neurol Scand 1963, 39(suppl):181–187.

    Google Scholar 

  61. Gillingham F, Kalyanaraman S, Donaldson A: Bilateral stereotaxic lesions in the management of Parkinsonism and the dyskinesia. BMJ 1964, 2:656–659.

    Article  PubMed  CAS  Google Scholar 

  62. Tasker R: Tremor of parkinsonism and stereotactic thalamotomy [editorial]. Mayo Clin Proc 1987, 62:736–739.

    PubMed  CAS  Google Scholar 

  63. Laitinen L: Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 1992, 76:53–61.

    PubMed  CAS  Google Scholar 

  64. Dogali M, Fazzine E, Kolodny E, et al.: Stereotactic ventral pallidotomy for Parkinson’s disease. Neurology 1995, 45:753–761.

    PubMed  CAS  Google Scholar 

  65. Fazzini E, Dogali M, Sterio D, et al.: Stereotactic pallidotomy for Parkinson’s disease: a long-term follow-up of unilateral pallidotomy. Neurology 1997, 48:1273–1277.

    PubMed  CAS  Google Scholar 

  66. Nashner L, Minn A, Rodrigues K, et al.: Postural instability in Parkinson’s disease: opposing effects of treatment on sensory and motor components. Paper presented at the Biannual Symposium of the International Society for Postural and Gait Research. Maastricht, The Netherlands, June 2001.

  67. Baron M, Vitek J, Bakay R, et al.: Treatment of advanced Parkinson’s disease by unilateral posterior GPi pallidotomy: 4-year results of a pilot study. Mov Disord 2000, 15:230–237. This study reported careful long-term follow-up of unilateral pallidotomy in advanced PD (Class II evidence).

    Article  PubMed  Google Scholar 

  68. Fine J, Duff J, Chen R, et al.: Long-term follow-up of unilateral pallidotomy in advanced Parkinson’s disease. N Engl J Med 2000, 342:1708–1714. This study reported careful long-term follow-up of unilateral pallidotomy in advanced PD (Class III evidence).

    Article  PubMed  CAS  Google Scholar 

  69. Schuurman P, De Bie R, Speelman J, Bosch D: Bilateral posteroventral pallidotomy in advanced Parkinson’s disease in three patients. Mov Disord 1997, 12:752–755.

    Article  PubMed  CAS  Google Scholar 

  70. Scott R, Gregory R, Hines N, et al.: Neuropsychological, neurological and functional outcome following pallidotomy for Parkinson’s disease: a consecutive series of eight simultaneous bilateral and twelve unilateral procedures. Brain 1998, 121:659–675.

    Article  PubMed  Google Scholar 

  71. Alvarez L, Macias R, Guridi J, et al.: Dorsal subthalamotomy for Parkinson’s disease. Mov Disord 2001, 16:72–78.

    Article  PubMed  CAS  Google Scholar 

  72. Gill S, Heywood P: Bilateral dorsolateral subthalamotomy for advanced Parkinson’s disease. Lancet 1997, 350:1224.

    Article  PubMed  CAS  Google Scholar 

  73. Gill S, Heywood P: Bilateral subthalamic nucleotomy can be accomplished safely [abstract]. Mov Disord 1998, 13(suppl):201.

    Google Scholar 

  74. Moro E, Esselink JA, Xie J, et al.: The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology 2002, 59:706–713. A systematic study of different electrical parameters that used monopolar STN DBS in 12 patients with PD.

    PubMed  CAS  Google Scholar 

  75. Volkmann J, Allert N, Voges J, et al.: Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 2001, 56:548–551.

    PubMed  CAS  Google Scholar 

  76. Rizzone M, Lanotte M, Bergamasco B, et al.: Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry 2001, 71:215–219.

    Article  PubMed  CAS  Google Scholar 

  77. Schuurman RS, Bosch DA, Bossuyt PMM, et al.: A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 2000, 342:461–468.

    Article  PubMed  CAS  Google Scholar 

  78. Koller W, Pahwa R, Busenbark K, et al.: High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol 1997, 42:292–299.

    Article  PubMed  CAS  Google Scholar 

  79. Benabid A, Pollak P, Gao D, et al.: Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 1996, 84:203–214.

    Article  PubMed  CAS  Google Scholar 

  80. Blond S, Caparros-Lefebvre D, Parker F, et al.: Control of tremor and involuntary movement disorders by chronic stereotactic stimulation of the ventral intermediate thalamic nucleus. J Neurosurg 1992, 77:62–68.

    PubMed  CAS  Google Scholar 

  81. Geny C, Nguyen J, Pollin B, et al.: Improvement of severe postural cerebellar tremor in multiple sclerosis by chronic thalamic stimulation. Mov Disord 1996, 11:489–494.

    Article  PubMed  CAS  Google Scholar 

  82. Hubble J, Busenbark K, Wilkinson S, et al.: Deep brain stimulation for essential tremor. Neurology 1996, 46:1150–1153.

    PubMed  CAS  Google Scholar 

  83. Ondo W, Jankovic J, Schwartz K, et al.: Unilateral thalamic deep brain stimulation for refractory essential tremor and Parkinson’s disease tremor. Neurology 1998, 51:1063–1069.

    PubMed  CAS  Google Scholar 

  84. Pollak P, Benabid A, Gervason C, et al.: Long-term effects of chronic stimulation of the ventral intermediate thalamic nucleus in different types of tremor. Adv Neurol 1993, 60:408–413.

    PubMed  CAS  Google Scholar 

  85. Siegfried J, Lippitz B: Chronic electrical stimulation of the VL-VPL complex and of the pallidum in the treatment of movement disorders: personal experience since 1982. Stereotact Funct Neurosurg 1994, 62:71–75.

    Article  PubMed  CAS  Google Scholar 

  86. Tasker R, Munz M, Junn F, et al.: Deep brain stimulation and thalamotomy for tremor compared. Acta Neurochir Suppl (Wien) 1997, 68:49–53.

    CAS  Google Scholar 

  87. Limousin P, Krack P, Pollak P, et al.: Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 1998, 339:1105–1111.

    Article  PubMed  CAS  Google Scholar 

  88. Lang AE, Lozano AM, Montgomery E, et al.: Posteroventral medial pallidotomy in advanced Parkinson’s disease. N Engl J Med 1997, 337:1036–1042.

    Article  PubMed  CAS  Google Scholar 

  89. Trepanier L, Kumar R, Lozano A, et al.: Neuropsychological outcome of GPi pallidotomy and GPi or STN deep brain stimulation in Parkinson’s disease. Brain Cogn 2000, 42:324–347.

    Article  PubMed  CAS  Google Scholar 

  90. Samuel M, Caputo E, Brooks D, et al.: A study of medial pallidotomy for Parkinson’s disease: clinical outcome, MRI location and complications. Brain 1998, 121:59–75.

    Article  PubMed  Google Scholar 

  91. Uitti R, Wharen R, Turk M, et al.: Unilateral pallidotomy for Parkinson’s disease: comparison of outcome in younger versus elderly patients. Neurology 1997, 49:1072–1077.

    PubMed  CAS  Google Scholar 

  92. McCarter R, Walton N, Rowan A, et al.: Cognitive functioning after subthalamic nucleotomy for refractory Parkinson’s disease. J Neurol Neurosurg Psychiatry 2000, 69:60–66.

    Article  PubMed  CAS  Google Scholar 

  93. Saint-Cyr J, Trepanier L, Kiman R, et al.: Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 2000, 123:2091–2108.

    Article  PubMed  Google Scholar 

  94. Bejjani B, Damiere P, Arnulf I, et al.: Transient acute depression induced by high-frequency deep-brain stimulation [see comments]. N Engl J Med 1999, 340:1476–1480. This study showed that DBS involving the SNpr induced reversible and reproducible symptoms and signs of depression.

    Article  PubMed  CAS  Google Scholar 

  95. Moro E, Scerrati M, Romito L, et al.: Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology 1999, 53:85–90.

    PubMed  CAS  Google Scholar 

  96. Burchiel K, Anderson V, Favre J, Hammerstad J: Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: results of a randomized, blinded pilot study. Neurosurgery 1999, 45:1375–1382.

    Article  PubMed  CAS  Google Scholar 

  97. Kumar R, Lozano A, Kim Y, et al.: Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 1998, 51:850–855. This study evaluated the patients after all had STN DBS procedures, but the examiners (and patients) were blinded to the whether the stimulators were on or off.

    PubMed  CAS  Google Scholar 

  98. Alegret M, Junque C, Valldeoriola F, et al.: Effects of bilateral subthalamic stimulation on cognitive function in Parkinson’s disease. Arch Neurol 2001, 58:1223–1227.

    Article  PubMed  CAS  Google Scholar 

  99. Allert N, Volkmann J, Dotse S, et al.: Effects of bilateral pallidal or subthalamic stimulation on gait in advanced Parkinson’s disease. Mov Disord 2001, 16:1076–1085.

    Article  PubMed  CAS  Google Scholar 

  100. Yokoyama T, Sugiyama K, Nishizawa S, et al.: Subthalamic nucleus stimulation for gait disturbance in Parkinson’s disease. Neurosurgery 1999, 45:41–49.

    Article  PubMed  CAS  Google Scholar 

  101. Faist M, Xie J, Kurz D, et al.: Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson’s disease. Brain 2001, 124:1590–1600.

    Article  PubMed  CAS  Google Scholar 

  102. Krystkowiak P, Defebvre L, Blatt J, et al.: Influence of subthalamic nucleus stimulation on gait in Parkinson’s disease: a study using the optoelectronic VICON system [abstract]. Mov Disord 2000, 15(suppl):48.

    Google Scholar 

  103. Melnick ME, Dowling GA, Aminoff MJ, Barbaro NM: Effect of pallidotomy on postural control and motor function in Parkinson disease. Arch Neurol 1999, 56:1361–1365.

    Article  PubMed  CAS  Google Scholar 

  104. Pinter M, Alesch F, Murg M, et al.: Deep brain stimulation of the subthalamic nucleus for control of extrapyramidal features in advanced idiopathic Parkinson’s disease: 1-year follow-up. J Neural Transm 1999, 106:693–709.

    Article  PubMed  CAS  Google Scholar 

  105. Krack P, Pollak P, Limousin P, et al.: Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 1998, 121:451–457.

    Article  PubMed  Google Scholar 

  106. Fraix V, Pollak P, Van Blercom N, et al.: Effect of subthalamic nucleus stimulation on levodopainduced dyskinesia in Parkinson’s disease. Neurology 2000, 55:1921–1923.

    PubMed  CAS  Google Scholar 

  107. Tomaszewski K, Holloway R: Deep brain stimulation in the treatment of Parkinson’s disease: a cost-effectiveness analysis. Neurology 2001, 57:663–671.

    PubMed  CAS  Google Scholar 

  108. Krack P, Poepping M, Weinert D, et al.: Thalamic, pallidal, or subthalamic surgery for Parkinson’s disease. J Neurol 2000, 247(suppl):122–134.

    Google Scholar 

  109. Pollak P, Benabid A, Krack P, et al.: Deep Brain Stimulation. Baltimore: Williams & Wilkins; 1998.

    Google Scholar 

  110. Bejjani B, Damier P, Arnulf I, et al.: Pallidal stimulation of Parkinson’s disease: two targets? Neurology 1997, 49:1564–1569.

    PubMed  CAS  Google Scholar 

  111. Kumar R, Lozano A, Montgomery E, Lang A: Pallidotomy and deep brain stimulation of the pallidum and subthalamic nucleus in advanced Parkinson’s disease. Mov Disord 1998, 13(suppl):73–82.

    PubMed  Google Scholar 

  112. Brown R, Limousin D, Brown P, et al.: Impact of deep brain stimulation on upper limb akinesia in Parkinson’s disease. Ann Neurol 1999, 45:473–488.

    Article  PubMed  CAS  Google Scholar 

  113. Friedman D, Goldman H, Flanders A, et al.: Stereotactic radiosurgical pallidotomy and thalamotomy with the gamma knife: MR imaging findings with clinical correlation: preliminary experience. Radiology 1999, 212:143–150.

    PubMed  CAS  Google Scholar 

  114. Friedman J, Epstein M, Sanes J, et al.: Gamma knife pallidotomy in advanced Parkinson’s disease. Ann Neurol 1996, 39:535–538.

    Article  PubMed  CAS  Google Scholar 

  115. Okun M, Stover N, Subramanian T, et al.: Complications of gamma knife surgery for Parkinson disease. Arch Neurol 2001, 58:1995–2002.

    Article  PubMed  CAS  Google Scholar 

  116. Freed C, Greene P, Breeze R, et al.: Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001, 344:710–719. The first National Institute of Neurological Disorders and Stroke-funded Class I study that examined the effects of fetal embryonic tissue transplantation in patients with PD.

    Article  PubMed  CAS  Google Scholar 

  117. Lindvall O: Neural transplantation: a hope for patients with Parkinson’s disease? Neuro Report 1997, 8:3–10.

    Google Scholar 

  118. Olanow C, Freeman T, Kordower J: Neural transplantation as a therapy for Parkinson’s disease. Adv Neurol 1997, 74:249–269.

    PubMed  CAS  Google Scholar 

  119. Wenning G: Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol 1997, 42:95–107.

    Article  PubMed  CAS  Google Scholar 

  120. Watts RL, Raiser CD, Stover NP, et al.: Stereotaxic intrastriatal implantation of retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease patients: long-term follow-up. Neurology 2002, 58(suppl):A241.

    Google Scholar 

  121. Choi-Lundberg D: Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 1997, 275:838–841.

    Article  PubMed  CAS  Google Scholar 

  122. Mandel R, Spratt S, Snyder R, Leff S: Midbrain injection of recombinant adenoassociated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamineinduced degeneration model of Parkinson’s disease in rats. PNAS 1997, 94:14083–14088.

    Article  PubMed  CAS  Google Scholar 

  123. Bilang-Bleuel A: Intrastriatal injection of an adenoviral vector expressing glial cell line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson’s disease. PNAS 1997, 94:8818–8823.

    Article  PubMed  CAS  Google Scholar 

  124. Choi-Lundberg D: Behavioral and cellular protection of rat dopaminergic neurons by an adenoviral vector encoding glial cell line-derived neurotrophic factor. Exp Neurol 1998, 154:261–275.

    Article  PubMed  CAS  Google Scholar 

  125. Frim D, Uhler TA, Galpern WR, et al.: Implanted fibroblasts genetically engineered to produce brain derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. PNAS 1999, 91:5104–5108.

    Article  Google Scholar 

  126. Levivier M, Przedborski S, Bencsics C, Kang U: Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 1995, 15:7810–7820.

    PubMed  CAS  Google Scholar 

  127. Tseng J, Baetge E, Zurn A, Aebischer P: GDNF reduces drug-induced rotational behavior after medial forebrain bundle transection by a mechanism not involving striatal dopamine. J Neurosci 1997, 17:325–333.

    PubMed  CAS  Google Scholar 

  128. Kordower J, Emborg M, Bloch J, et al.: Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000, 290:767–773. This study demonstrated increased numbers of dopaminergic neurons and also improved behavior in MPTP-treated primates after intra-nigral and intra-striatal application of lenti-GDNF.

    Article  PubMed  CAS  Google Scholar 

  129. Kordower J, Palf IS, Chen E, et al.: Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 1999, 46:419–424. This case study showed no effect and complications such as L’Hermitte’s sign in a patient after receiving intra-ventricular GDNF. This was published before Tseng et al. [127], and shows that the site of delivery is very important.

    Article  PubMed  CAS  Google Scholar 

  130. Storch A, Paul G, Csete M, et al.: Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp Neurol 2001, 170:317–325.

    Article  PubMed  CAS  Google Scholar 

  131. Sawamoto K, Nakao N, Ogawa Y, et al.: Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. J Neurosci 2001, 21:3895–3903.

    PubMed  CAS  Google Scholar 

  132. Lois C, Alvarez-Buylia A: Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. PNAS 1993, 90:2074–2077.

    Article  PubMed  CAS  Google Scholar 

  133. Johansson C, Momma S, Clarke D, et al.: Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999, 96:25–34.

    Article  PubMed  CAS  Google Scholar 

  134. Clarke D, Johansson C, Wilbertz J, et al.: Generalized potential of adult neural stem cells. Science 2000, 288:1660–1663.

    Article  PubMed  CAS  Google Scholar 

  135. Fallon J, Reid S, Kinyamu R, et al.: In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. PNAS 2000, 97:14686–14691.

    Article  PubMed  CAS  Google Scholar 

  136. Arvidsson A, Collin T, Kirik D, et al.: Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002, 8:963–970.

    Article  PubMed  CAS  Google Scholar 

  137. Holden C: Stem cells: $2.2 million for cells to fight Parkinson’s. Science 2001, 293:1966.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronte-Stewart, H. Parkinson’s disease: Surgical options. Curr Treat Options Neurol 5, 131–147 (2003). https://doi.org/10.1007/s11940-003-0004-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-003-0004-1

Keywords

Navigation