Skip to main content
Log in

Risk-Based Prostate Cancer Screening: Who and How?

  • Prostate Cancer (D Parekh, Section Editor)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

The purpose of this review is to identify clinical risk factors for prostate cancer and to assess the utility and limitations of our current tools for prostate cancer screening. Prostate-specific antigen is the single most important factor for identifying men at increased risk of prostate cancer but is best assessed in the context of other clinical factors; increasing age, race, and family history are well-established risk factors for the diagnosis of prostate cancer. In addition to clinical risk calculators, novel tools such as multiparametric imaging, serum or urinary biomarkers, and genetic profiling show promise in improving prostate cancer diagnosis and characterization. Optimal use of existing and future tools will help alleviate the problems of overdiagnosis and overtreatment of low-risk prostate cancer without reversing the substantial mortality declines that have been achieved in the screening era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Surveillance, epidemiology and end results. Seer prostate cancer data. Available at http://www.Seer.Cancer.Gov/. Accessed January 2013.

  3. Etzioni R, Tsodikov A, Mariotto A, Szabo A, Falcon S, Wegelin J, et al. Quantifying the role of PSA screening in the us prostate cancer mortality decline. Cancer Causes Control. 2008;19:175–81.

    Article  PubMed  Google Scholar 

  4. •• Etzioni R, Gulati R, Tsodikov A, Wever EM, Penson DF, Heijnsdijk EA, et al. The prostate cancer conundrum revisited: treatment changes and prostate cancer mortality declines. Cancer. 2012;118:5955–63. An outstanding rebuttal to the common claim that mortality declines in prostate cancer can be attributed primarily to improvements in treatment.

    Article  PubMed  Google Scholar 

  5. Cooperberg MR, Broering JM, Kantoff PW, Carroll PR. Contemporary trends in low risk prostate cancer: risk assessment and treatment. J Urol. 2007;178:S14–9.

    Article  PubMed  Google Scholar 

  6. • Andriole GL, Crawford ED, Grubb 3rd RL, Buys SS, Chia D, Church TR, et al. Prostate cancer screening in the randomized prostate, lung, colorectal, and ovarian cancer screening trial: mortality results after 13 years of follow-up. J Natl Cancer Inst. 2012;104:125–32. Important update to the PLCO trial, acknowledging that the trial was a randomization between opportunitstic and annual screening, not between screening and no-screening.

    Article  PubMed  Google Scholar 

  7. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360:1320–8.

    Article  PubMed  Google Scholar 

  8. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med. 2012;366:981–90.

    Article  PubMed  Google Scholar 

  9. •• Hugosson J, Carlsson S, Aus G, Bergdahl S, Khatami A, Lodding P, et al. Mortality results from the gotebörg randomised population-based prostate-cancer screening trial. Lancet Oncol. 2010;11:725–32. The best randomized screening trial reported to date: Men were younger at diagnosis than PLCO or ERSPC, had less contamination in the control arm, and—most importantly—were not uniformly treated for low-risk disease.

    Article  PubMed  Google Scholar 

  10. Schroder FH, Hugosson J, Carlsson S, Tammela T, Maattanen L, Auvinen A, et al. Screening for prostate cancer decreases the risk of developing metastatic disease: findings from the European randomized study of screening for prostate cancer (erspc). Eur Urol. 2012;62:745–52.

    Article  PubMed  Google Scholar 

  11. • Pinsky PF, Blacka A, Kramer BS, Miller A, Prorok PC, Berg C. Assessing contamination and compliance in the prostate component of the prostate, lung, colorectal, and ovarian (plco) cancer screening trial. Clin Trials. 2010;7:303–11. Important paper reporting the true PSA contamination rate in the PLCO trial: 79 % of "control" patients had some exposure to PSA testing.

    Article  PubMed  Google Scholar 

  12. Walter LC, Bertenthal D, Lindquist K, Konety BR. PSA screening among elderly men with limited life expectancies. JAMA. 2006;296:2336–42.

    Article  PubMed  CAS  Google Scholar 

  13. Greene KL, Albertsen PC, Babaian RJ, Carter HB, Gann PH, Han M, et al. Prostate specific antigen best practice statement: 2009 update. J Urol. 2009;182:2232–41.

    Article  PubMed  CAS  Google Scholar 

  14. Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V, et al. Eau guidelines on prostate cancer. Part 1: Screening, diagnosis, and treatment of clinically localised disease. Eur Urol. 2011;59:61–71.

    Article  PubMed  Google Scholar 

  15. Kawachi MH, Bahnson RR, Barry M, Busby JE, Carroll PR, Carter HB, et al. Nccn clinical practice guidelines in oncology: prostate cancer early detection. J Natl Compr Cancer Netw JNCCN. 2010;8:240–62.

    CAS  Google Scholar 

  16. Wolf AM, Wender RC, Etzioni RB, Thompson IM, D'Amico AV, Volk RJ, et al. American cancer society guideline for the early detection of prostate cancer: update 2010. CA Cancer J Clin. 2010;60:70–98.

    Article  PubMed  Google Scholar 

  17. • Bechis SK, Carroll PR, Cooperberg MR. Impact of age at diagnosis on prostate cancer treatment and survival. J Clin Oncol. 2011;29:235–41. An observational study demonstrating that treatment decisions are guided too heavily by age and not enough by disease risk.

    Article  PubMed  Google Scholar 

  18. Schwartz KL, Alibhai SM, Tomlinson G, Naglie G, Krahn MD. Continued undertreatment of older men with localized prostate cancer. Urology. 2003;62:860–5.

    Article  PubMed  Google Scholar 

  19. Stangelberger A, Waldert M, Djavan B. Prostate cancer in elderly men. Rev Urol. 2008;10:111–9.

    PubMed  Google Scholar 

  20. Stricker PD, Frydenberg M, Kneebone A, Chopra S. Informed prostate cancer risk-adjusted testing: a new paradigm. BJU Int. 2012;110 Suppl 4:30–4.

    Article  PubMed  Google Scholar 

  21. Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS, et al. Assessing prostate cancer risk: results from the prostate cancer prevention trial. J Natl Cancer Inst. 2006;98:529–34.

    Article  PubMed  Google Scholar 

  22. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  23. Hsieh K, Albertsen PC. Populations at high risk for prostate cancer. Urol Clin N Am. 2003;30:669–76.

    Article  Google Scholar 

  24. Shao YH, Demissie K, Shih W, Mehta AR, Stein MN, Roberts CB, et al. Contemporary risk profile of prostate cancer in the United States. J Natl Cancer Inst. 2009;101:1280–3.

    Article  PubMed  Google Scholar 

  25. • Porten SP, Richardson DA, Odisho AY, McAninch JW, Carroll PR, Cooperberg MR. Disproportionate presentation of high risk prostate cancer in a safety net health system. J Urol. 2010;184:1931–6. The greatest needs in earlier detection and better treatment for prostate cancer are in low-socioeconomic-status men. The reasons are likely multifactorial.

    Article  PubMed  Google Scholar 

  26. Mokete M, Shackley DC, Betts CD, O'Flynn KJ, Clarke NW. The increased rate of prostate specific antigen testing has not affected prostate cancer presentation in an inner city population in the uk. BJU Int. 2006;97:266–9.

    Article  PubMed  Google Scholar 

  27. Miller DC, Litwin MS, Bergman J, Stepanian S, Connor SE, Kwan L, et al. Prostate cancer severity among low income, uninsured men. J Urol. 2009;181:579–83. discussion 583-574.

    Article  PubMed  Google Scholar 

  28. Dale W, Vijayakumar S, Lawlor EF, Merrell K. Prostate cancer, race, and socioeconomic status: inadequate adjustment for social factors in assessing racial differences. Prostate. 1996;29:271–81.

    Article  PubMed  CAS  Google Scholar 

  29. Gilligan T, Wang PS, Levin R, Kantoff PW, Avorn J. Racial differences in screening for prostate cancer in the elderly. Arch Intern Med. 2004;164:1858–64.

    Article  PubMed  Google Scholar 

  30. Miller DC, Gelberg L, Kwan L, Stepanian S, Fink A, Andersen RM, et al. Racial disparities in access to care for men in a public assistance program for prostate cancer. J Community Health. 2008;33:318–35.

    Article  PubMed  Google Scholar 

  31. Brandt A, Bermejo JL, Sundquist J, Hemminki K. Age-specific risk of incident prostate cancer and risk of death from prostate cancer defined by the number of affected family members. Eur Urol. 2010;58:275–80.

    Article  PubMed  Google Scholar 

  32. van Roermund JG, Witjes JA. The impact of obesity on prostate cancer. World J Urol. 2007;25:491–7.

    Article  PubMed  Google Scholar 

  33. Smith MR, Bae K, Efstathiou JA, Hanks GE, Pilepich MV, Sandler HM, et al. Diabetes and mortality in men with locally advanced prostate cancer: Rtog 92-02. J Clin Oncol. 2008;26:4333–9.

    Article  PubMed  Google Scholar 

  34. Wu C, Moreira DM, Gerber L, Rittmaster RS, Andriole GL, Freedland SJ. Diabetes and prostate cancer risk in the reduce trial. Prostate Cancer Prostatic Dis. 2011;14:326–31.

    Article  PubMed  CAS  Google Scholar 

  35. Martin RM, Vatten L, Gunnell D, Romundstad P, Nilsen TI. Components of the metabolic syndrome and risk of prostate cancer: the hunt 2 cohort, Norway. Cancer Causes Control: CCC. 2009;20:1181–92.

    Article  PubMed  Google Scholar 

  36. Mydlo JH, Tieng NL, Volpe MA, Chaiken R, Kral JG. A pilot study analyzing PSA, serum testosterone, lipid profile, body mass index and race in a small sample of patients with and without carcinoma of the prostate. Prostate Cancer Prostatic Dis. 2001;4:101–5.

    Article  PubMed  CAS  Google Scholar 

  37. Antonelli JA, Jones LW, Banez LL, Thomas JA, Anderson K, Taylor LA, et al. Exercise and prostate cancer risk in a cohort of veterans undergoing prostate needle biopsy. J Urol. 2009;182:2226–31.

    Article  PubMed  Google Scholar 

  38. Kenfield SA, Stampfer MJ, Chan JM, Giovannucci E. Smoking and prostate cancer survival and recurrence. JAMA. 2011;305:2548–55.

    Article  PubMed  CAS  Google Scholar 

  39. Walsh TJ, Schembri M, Turek PJ, Chan JM, Carroll PR, Smith JF, et al. Increased risk of high-grade prostate cancer among infertile men. Cancer. 2010;116:2140–7.

    PubMed  Google Scholar 

  40. • Daskivich TJ, Chamie K, Kwan L, Labo J, Dash A, Greenfield S, et al. Comorbidity and competing risks for mortality in men with prostate cancer. Cancer. 2011;117:4642–50. An important study reinforcing that most men diagnosed with low-risk prostate cancer die of other causes.

    Article  PubMed  Google Scholar 

  41. • Albertsen PC, Moore DF, Shih W, Lin Y, Li H, Lu-Yao GL. Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol. 2011;29:1335–41. Like Daskivich et al., a strong argument for screening decisions based on comorbidity and life expectancy, rather than chronological age alone.

    Article  PubMed  Google Scholar 

  42. Schroder FH, Roobol MJ, Andriole GL, Fleshner N. Defining increased future risk for prostate cancer: evidence from a population based screening cohort. J Urol. 2009;181:69–74. discussion 74.

    Article  PubMed  Google Scholar 

  43. Fleshner NE, Lawrentschuk N. Risk of developing prostate cancer in the future: overview of prognostic biomarkers. Urology. 2009;73:S21–7.

    Article  PubMed  Google Scholar 

  44. Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med. 1991;324:1156–61.

    Article  PubMed  CAS  Google Scholar 

  45. Catalona WJ, Smith DS, Ornstein DK. Prostate cancer detection in men with serum PSA concentrations of 2.6 to 4.0 ng/ml and benign prostate examination. Enhancement of specificity with free PSA measurements. JAMA. 1997;277:1452–5.

    Article  PubMed  CAS  Google Scholar 

  46. Thompson IM, Ankerst DP, Chi C, Lucia MS, Goodman PJ, Crowley JJ, et al. Operating characteristics of prostate-specific antigen in men with an initial PSA level of 3.0 ng/ml or lower. JAMA. 2005;294:66–70.

    Article  PubMed  CAS  Google Scholar 

  47. Gann PH, Hennekens CH, Stampfer MJ. A prospective evaluation of plasma prostate-specific antigen for detection of prostatic cancer. JAMA. 1995;273:289–94.

    Article  PubMed  CAS  Google Scholar 

  48. Fang J, Metter EJ, Landis P, Chan DW, Morrell CH, Carter HB. Low levels of prostate-specific antigen predict long-term risk of prostate cancer: results from the Baltimore longitudinal study of aging. Urology. 2001;58:411–6.

    Article  PubMed  CAS  Google Scholar 

  49. Antenor JA, Han M, Roehl KA, Nadler RB, Catalona WJ. Relationship between initial prostate specific antigen level and subsequent prostate cancer detection in a longitudinal screening study. J Urol. 2004;172:90–3.

    Article  PubMed  Google Scholar 

  50. Loeb S, Roehl KA, Antenor JA, Catalona WJ, Suarez BK, Nadler RB. Baseline prostate-specific antigen compared with median prostate-specific antigen for age group as predictor of prostate cancer risk in men younger than 60 years old. Urology. 2006;67:316–20.

    Article  PubMed  Google Scholar 

  51. •• Vickers AJ, Cronin AM, Bjork T, Manjer J, Nilsson PM, Dahlin A, et al. Prostate specific antigen concentration at age 60 and death or metastasis from prostate cancer: case-control study. BMJ. 2010;341:c4521. A unique cohort, analysis of which demonstrates one component of what a "smarter screening" program may look like.

    Article  PubMed  Google Scholar 

  52. Roobol MJ, Roobol DW, Schroder FH. Is additional testing necessary in men with prostate-specific antigen levels of 1.0 ng/ml or less in a population-based screening setting? (erspc, section rotterdam). Urology. 2005;65:343–6.

    Article  PubMed  Google Scholar 

  53. Carter HB, Pearson JD, Waclawiw Z, Metter EJ, Chan DW, Guess HA, et al. Prostate-specific antigen variability in men without prostate cancer: effect of sampling interval on prostate-specific antigen velocity. Urology. 1995;45:591–6.

    Article  PubMed  CAS  Google Scholar 

  54. Loeb S, Roehl KA, Helfand BT, Kan D, Catalona WJ. Can prostate specific antigen velocity thresholds decrease insignificant prostate cancer detection? J Urol. 2010;183:112–6.

    Article  PubMed  CAS  Google Scholar 

  55. Carter HB, Ferrucci L, Kettermann A, Landis P, Wright EJ, Epstein JI, et al. Detection of life-threatening prostate cancer with prostate-specific antigen velocity during a window of curability. J Natl Cancer Inst. 2006;98:1521–7.

    Article  PubMed  Google Scholar 

  56. Ulmert D, Serio AM, O'Brien MF, Becker C, Eastham JA, Scardino PT, et al. Long-term prediction of prostate cancer: Prostate-specific antigen (PSA) velocity is predictive but does not improve the predictive accuracy of a single PSA measurement 15 years or more before cancer diagnosis in a large, representative, unscreened population. J Clin Oncol. 2008;26:835–41.

    Article  PubMed  Google Scholar 

  57. Vickers AJ, Till C, Tangen CM, Lilja H, Thompson IM. An empirical evaluation of guidelines on prostate-specific antigen velocity in prostate cancer detection. J Natl Cancer Inst. 2011;103:462–9.

    Article  PubMed  Google Scholar 

  58. Okotie OT, Roehl KA, Han M, Loeb S, Gashti SN, Catalona WJ. Characteristics of prostate cancer detected by digital rectal examination only. Urology. 2007;70:1117–20.

    Article  PubMed  Google Scholar 

  59. Panebianco V, Sciarra A, Marcantonio A, Forte V, Biondi T, Laghi A, et al. Conventional imaging and multiparametric magnetic resonance (mri, mrs, dwi, mrp) in the diagnosis of prostate cancer. Q J Nucl Med Mol Imaging. 2012;56:331–42.

    PubMed  CAS  Google Scholar 

  60. Chun FK, Karakiewicz PI, Briganti A, Gallina A, Kattan MW, Montorsi F, et al. Prostate cancer nomograms: an update. Eur Urol. 2006;50:914–26. discussion 926.

    Article  PubMed  Google Scholar 

  61. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or = 4.0 ng per milliliter. N Engl J Med. 2004;350:2239–46.

    Article  PubMed  CAS  Google Scholar 

  62. Parekh DJ, Ankerst DP, Higgins BA, Hernandez J, Canby-Hagino E, Brand T, et al. External validation of the prostate cancer prevention trial risk calculator in a screened population. Urology. 2006;68:1152–5.

    Article  PubMed  Google Scholar 

  63. Eyre SJ, Ankerst DP, Wei JT, Nair PV, Regan MM, Bueti G, et al. Validation in a multiple urology practice cohort of the prostate cancer prevention trial calculator for predicting prostate cancer detection. J Urol. 2009;182:2653–8.

    Article  PubMed  Google Scholar 

  64. Hernandez DJ, Han M, Humphreys EB, Mangold LA, Taneja SS, Childs SJ, et al. Predicting the outcome of prostate biopsy: comparison of a novel logistic regression-based model, the prostate cancer risk calculator, and prostate-specific antigen level alone. BJU Int. 2009;103:609–14.

    Article  PubMed  Google Scholar 

  65. • Nam RK, Kattan MW, Chin JL, Trachtenberg J, Singal R, Rendon R, et al. Prospective multi-institutional study evaluating the performance of prostate cancer risk calculators. J Clin Oncol. 2011;29:2959–64. Excellent analysis of risk calculators to be used to help decide whether to proceed with biopsy.

    Article  PubMed  Google Scholar 

  66. Roobol MJ, Steyerberg EW, Kranse R, Wolters T, van den Bergh RC, Bangma CH, et al. A risk-based strategy improves prostate-specific antigen-driven detection of prostate cancer. Eur Urol. 2010;57:79–85.

    Article  PubMed  Google Scholar 

  67. van Vugt HA, Roobol MJ, Kranse R, Maattanen L, Finne P, Hugosson J, et al. Prediction of prostate cancer in unscreened men: external validation of a risk calculator. Eur J Cancer. 2011;47:903–9.

    Article  PubMed  Google Scholar 

  68. Trottier G, Roobol MJ, Lawrentschuk N, Bostrom PJ, Fernandes KA, Finelli A, et al. Comparison of risk calculators from the prostate cancer prevention trial and the European randomized study of screening for prostate cancer in a contemporary Canadian cohort. BJU Int. 2011;108:E237–44.

    Article  PubMed  Google Scholar 

  69. Oliveira M, Marques V, Carvalho AP, Santos A. Head-to-head comparison of two online nomograms for prostate biopsy outcome prediction. BJU Int. 2011;107:1780–3.

    Article  PubMed  Google Scholar 

  70. Cavadas V, Osorio L, Sabell F, Teves F, Branco F, Silva-Ramos M. Prostate cancer prevention trial and European randomized study of screening for prostate cancer risk calculators: a performance comparison in a contemporary screened cohort. Eur Urol. 2010;58:551–8.

    Article  PubMed  Google Scholar 

  71. Nam RK, Toi A, Klotz LH, Trachtenberg J, Jewett MA, Appu S, et al. Assessing individual risk for prostate cancer. J Clin Oncol. 2007;25:3582–8.

    Article  PubMed  CAS  Google Scholar 

  72. Tosoian JJ, Loeb S, Kettermann A, Landis P, Elliot DJ, Epstein JI, et al. Accuracy of pca3 measurement in predicting short-term biopsy progression in an active surveillance program. J Urol. 2010;183:534–8.

    Article  PubMed  CAS  Google Scholar 

  73. Ankerst DP, Groskopf J, Day JR, Blase A, Rittenhouse H, Pollock BH, et al. Predicting prostate cancer risk through incorporation of prostate cancer gene 3. J Urol. 2008;180:1303–8. discussion 1308.

    Article  PubMed  Google Scholar 

  74. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 2008;8:497–511.

    Article  PubMed  CAS  Google Scholar 

  75. Rajput AB, Miller MA, De Luca A, Boyd N, Leung S, Hurtado-Coll A, et al. Frequency of the tmprss2:Erg gene fusion is increased in moderate to poorly differentiated prostate cancers. J Clin Pathol. 2007;60:1238–43.

    Article  PubMed  CAS  Google Scholar 

  76. Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, Flohr P, et al. Duplication of the fusion of tmprss2 to erg sequences identifies fatal human prostate cancer. Oncogene. 2008;27:253–63.

    Article  PubMed  CAS  Google Scholar 

  77. Nam RK, Sugar L, Wang Z, Yang W, Kitching R, Klotz LH, et al. Expression of tmprss2:Erg gene fusion in prostate cancer cells is an important prognostic factor for cancer progression. Cancer Biol Ther. 2007;6:40–5.

    Article  PubMed  CAS  Google Scholar 

  78. Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S, et al. Tmprss2:Erg fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 2006;66:8337–41.

    Article  PubMed  CAS  Google Scholar 

  79. Rubio-Briones J, Fernandez-Serra A, Calatrava A, Garcia-Casado Z, Rubio L, Bonillo MA, et al. Clinical implications of tmprss2-erg gene fusion expression in patients with prostate cancer treated with radical prostatectomy. J Urol. 2010;183:2054–61.

    Article  PubMed  CAS  Google Scholar 

  80. Sokoll LJ, Sanda MG, Feng Z, Kagan J, Mizrahi IA, Broyles DL, et al. A prospective, multicenter, national cancer institute early detection research network study of [-2]propsa: improving prostate cancer detection and correlating with cancer aggressiveness. Cancer Epidemiol Biomarkers Prev. 2010;19:1193–200.

    Article  PubMed  Google Scholar 

  81. Vickers AJ, Cronin AM, Aus G, Pihl CG, Becker C, Pettersson K, et al. A panel of kallikrein markers can reduce unnecessary biopsy for prostate cancer: data from the European randomized study of prostate cancer screening in Goteborg, Sweden. BMC Med. 2008;6:19.

    Article  PubMed  Google Scholar 

  82. Vickers A, Cronin A, Roobol M, Savage C, Peltola M, Pettersson K, et al. Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: an independent replication. J Clin Oncol. 2010;28:2493–8.

    Article  PubMed  Google Scholar 

  83. Kim ST, Cheng Y, Hsu FC, Jin T, Kader AK, Zheng SL, et al. Prostate cancer risk-associated variants reported from genome-wide association studies: meta-analysis and their contribution to genetic variation. Prostate. 2010;70:1729–38.

    Article  PubMed  Google Scholar 

  84. Ewing CM, Ray AM, Lange EM, Zuhlke KA, Robbins CM, Tembe WD, et al. Germline mutations in hoxb13 and prostate-cancer risk. N Engl J Med. 2012;366:141–9.

    Article  PubMed  CAS  Google Scholar 

  85. Langer DL, van der Kwast TH, Evans AJ, Trachtenberg J, Wilson BC, Haider MA. Prostate cancer detection with multi-parametric mri: logistic regression analysis of quantitative t2, diffusion-weighted imaging, and dynamic contrast-enhanced mri. J Magn Reson Imaging: JMRI. 2009;30:327–34.

    Article  PubMed  Google Scholar 

  86. Hambrock T, Somford DM, Huisman HJ, van Oort IM, Witjes JA, Hulsbergen-van de Kaa CA, et al. Relationship between apparent diffusion coefficients at 3.0-t mr imaging and gleason grade in peripheral zone prostate cancer. Radiology. 2011;259:453–61.

    Article  PubMed  Google Scholar 

  87. Villeirs GM, De Meerleer GO, De Visschere PJ, Fonteyne VH, Verbaeys AC, Oosterlinck W. Combined magnetic resonance imaging and spectroscopy in the assessment of high grade prostate carcinoma in patients with elevated PSA: a single-institution experience of 356 patients. Eur J Radiol. 2011;77:340–5.

    Article  PubMed  Google Scholar 

  88. Yoshizako T, Wada A, Hayashi T, Uchida K, Sumura M, Uchida N, et al. Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer. Acta Radiol. 2008;49:1207–13.

    Article  PubMed  CAS  Google Scholar 

  89. Delongchamps NB, Beuvon F, Eiss D, Flam T, Muradyan N, Zerbib M, et al. Multiparametric mri is helpful to predict tumor focality, stage, and size in patients diagnosed with unilateral low-risk prostate cancer. Prostate Cancer Prostatic Dis. 2011;14:232–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Dr. Allison Glass reported no conflicts of interest relevant to this article.

Dr. K. Clint Cary reported no conflicts of interest relevant to this article.

Dr. Matthew R. Cooperberg reported no conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. Cooperberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glass, A.S., Cary, K.C. & Cooperberg, M.R. Risk-Based Prostate Cancer Screening: Who and How?. Curr Urol Rep 14, 192–198 (2013). https://doi.org/10.1007/s11934-013-0319-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-013-0319-8

Keywords

Navigation